ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible components of the moduli space of rank 2 sheaves of odd determinant on the projective space

94   0   0.0 ( 0 )
 نشر من قبل Charles Almeida
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe new irreducible components of the moduli space of rank $2$ semistable torsion free sheaves on the three-dimensional projective space whose generic point corresponds to non-locally free sheaves whose singular locus is either 0-dimensional or consists of a line plus disjoint points. In particular, we prove that the moduli spaces of semistable sheaves with Chern classes $(c_1,c_2,c_3)=(-1,2n,0)$ and $(c_1,c_2,c_3)=(0,n,0)$ always contain at least one rational irreducible component. As an application, we prove that the number of such components grows as the second Chern class grows, and compute the exact number of irreducible components of the moduli spaces of rank 2 semistable torsion free sheaves with Chern classes $(c_1,c_2,c_3)=(-1,2,m)$ for all possible values for $m$; all components turn out to be rational. Furthermore, we also prove that these moduli spaces are connected, showing that some of sheaves here considered are smoothable.



قيم البحث

اقرأ أيضاً

We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with $c_2(E)le4$, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space ${mathcal T}(d)$ of stable sheaves on $mathbb{P}^3$ with Hilbert polynomial $P(t)=dcdot t$, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity $d$; we describe all the irreducible components of ${mathcal T}(d)$ for $dle4$.
We present a new family of monads whose cohomology is a stable rank two vector bundle on $mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to constru ct a new infinite series of rational moduli components of stable rank two vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank two vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
We present a new family of monads whose cohomology is a stable rank two vector bundle on $PP$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. Such facts are used to prove that the mo duli space of stable rank two vector bundles of zero first Chern class and second Chern class equal to 5 has exactly three irreducible components.
102 - Wensheng Cao 2017
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n; F)$ equipped with the quotient topology. It is an important problem in hyperbolic geometry to parameterize $mathcal{M}(n,m;F bp^n)$ and study the geometric and topological structures on the associated parameter space. In this paper, by mainly using the rotation-normalized and block-normalized algorithms, we construct the parameter spaces of both $mathcal{M}(n,m; bhq)$ and $mathcal{M}(n,m;bp(V_+))$, respectively.
We study the moduli space of framed flags of sheaves on the projective plane via an adaptation of the ADHM construction of framed sheaves. In particular, we prove that, for certain values of the topological invariants, the moduli space of framed flag s of sheaves is an irreducible, nonsingular variety carrying a holomorphic pre-symplectic form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا