ﻻ يوجد ملخص باللغة العربية
We develop a theory for the thermal Hall coefficient in a spin-$frac{1}{2}$ system on a strip of Kagome lattice, where a chiral spin-interaction term is present. To this end, we model the Kagome strip as a three-leg $XXZ$ spin-ladder, and use Bosonization to derive a low-energy theory for the spinons in this system. Introducing further a Dzyaloshinskii-Moriya interaction ($D$) and a tunable magnetic field ($B$), we identify three distinct $B$-dependent quantum phases: a valence-bond crystal (VBC), a metallic spin liquid (MSL) and a chiral spin liquid (CSL). In the presence of a temperature difference $Delta T$ between the top and the bottom edges of the strip, we evaluate the net heat current $J_h$ along the strip, and consequently the thermal Hall conductivity $kappa_{xy}$. We find that the VBC-MSL-CSL transitions are accompanied by a pronounced qualitative change in the behavior of $kappa_{xy}$ as a function of $B$. In particular, analogously to the quantum Hall effect, $kappa_{xy}$ in the CSL phase exhibits a quantized plateau centered around a commensurate value of the spinon filling factor $ u_spropto B/D$.
The search for exotic quantum spin liquid states in simple yet realistic spin models remains a central challenge in the field of frustrated quantum magnetism. Here we consider the canonical nearest-neighbor kagome Heisenberg antiferromagnet restricte
A clear thermal Hall signal ($kappa_{xy}$) was observed in the spin liquid phase of the $S=1/2$ kagome antiferromagnet Ca kapellasite (CaCu$_3$(OH)$_6$Cl$_2cdot 0.6$H$_2$O). We found that $kappa_{xy}$ is well reproduced, both qualitatively and quanti
The recent observation of a half-integer quantized thermal Hall effect in $alpha$-RuCl$_3$ is interpreted as a unique signature of a chiral spin liquid with a Majorana edge mode. A similar quantized thermal Hall effect is expected in chiral topologic
Using a two-dimensional square lattice Heisenberg model with a Rashba-type Dzyaloshinskii-Moriya interaction, we demonstrate that chiral spin fluctuations can give rise to a thermal Hall effect in the absence of any static spin texture or momentum sp
The spinon continues to be an elusive elementary excitation of frustrated antiferromagnets. To solidify evidence for its existence, we address the question of what will be the Angle Resolved Photoemission Spectroscopy (ARPES) signatures of single cry