ترغب بنشر مسار تعليمي؟ اضغط هنا

Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: type C

127   0   0.0 ( 0 )
 نشر من قبل Alexander Molev
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An explicit isomorphism between the $R$-matrix and Drinfeld presentations of the quantum affine algebra in type $A$ was given by Ding and I. Frenkel (1993). We show that this result can be extended to types $B$, $C$ and $D$ and give a detailed construction for type $C$ in this paper. In all classical types the Gauss decomposition of the generator matrix in the $R$-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type $A$ and employ the universal $R$-matrix to construct the inverse map. A key role in our construction is played by a homomorphism theorem which relates the quantum affine algebra of rank $n-1$ in the $R$-matrix presentation with a subalgebra of the corresponding algebra of rank $n$ of the same type.

قيم البحث

اقرأ أيضاً

Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presen tation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient condi tions for irreducibility of tensor products of such evaluation modules.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$ . We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
137 - Dana C. Ernst 2011
In a previous paper, we presented an infinite dimensional associative diagram algebra that satisfies the relations of the generalized Temperley--Lieb algebra having a basis indexed by the fully commutative elements of the Coxeter group of type affine $C$. We also provided an explicit description of a basis for the diagram algebra. In this paper, we show that the diagrammatic representation is faithful and establish a correspondence between the basis diagrams and the so-called monomial basis of the Temperley--Lieb algebra of type affine $C$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا