ﻻ يوجد ملخص باللغة العربية
An explicit isomorphism between the $R$-matrix and Drinfeld presentations of the quantum affine algebra in type $A$ was given by Ding and I. Frenkel (1993). We show that this result can be extended to types $B$, $C$ and $D$ and give a detailed construction for type $C$ in this paper. In all classical types the Gauss decomposition of the generator matrix in the $R$-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type $A$ and employ the universal $R$-matrix to construct the inverse map. A key role in our construction is played by a homomorphism theorem which relates the quantum affine algebra of rank $n-1$ in the $R$-matrix presentation with a subalgebra of the corresponding algebra of rank $n$ of the same type.
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presen
Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient condi
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$
In a previous paper, we presented an infinite dimensional associative diagram algebra that satisfies the relations of the generalized Temperley--Lieb algebra having a basis indexed by the fully commutative elements of the Coxeter group of type affine