ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering and redshift-space distortions in modified gravity models with massive neutrinos

87   0   0.0 ( 0 )
 نشر من قبل Jorge Enrique Garcia Farieta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modified gravity and massive neutrino cosmologies are two of the most interesting scenarios that have been recently explored to account for possible observational deviations from the concordance $Lambda$-cold dark matter ($Lambda$CDM) model. In this context, we investigated the large-scale structure of the Universe by exploiting the dustp simulations that implement, simultaneously, the effects of $f(R)$ gravity and massive neutrinos. To study the possibility of breaking the degeneracy between these two effects, we analysed the redshift-space distortions in the clustering of dark matter haloes at different redshifts. Specifically, we focused on the monopole and quadrupole of the two-point correlation function, both in real and redshift space. The deviations with respect to $Lambda$CDM model have been quantified in terms of the linear growth rate parameter. We found that redshift-space distortions provide a powerful probe to discriminate between $Lambda$CDM and modified gravity models, especially at high redshifts ($z gtrsim 1$), even in the presence of massive neutrinos.



قيم البحث

اقرأ أيضاً

Cosmic voids are progressively emerging as a new viable cosmological probe. Their abundance and density profiles are sensitive to modifications of gravity, as well as to dark energy and neutrinos. The main goal of this work is to investigate the poss ibility of exploiting cosmic void statistics to disentangle the degeneracies resulting from a proper combination of $f(R)$ modified gravity and neutrino mass. We use N-body simulations to analyse the density profiles and size function of voids traced by both dark matter particles and haloes. We find clear evidence of the enhancement of gravity in $f(R)$ cosmologies in the void density profiles at $z=1$. However, these effects can be almost completely overridden by the presence of massive neutrinos because of their thermal free-streaming. Despite the limited volume of the analysed simulations does not allow us to achieve a statistically relevant abundance of voids larger than $40 mathrm{Mpc}/h$, we find that the void size function at high redshifts and for large voids is potentially an effective probe to disentangle these degenerate cosmological models, which is key in the prospective of the upcoming wide field redshift surveys.
139 - Elise Jennings 2012
We use large volume N-body simulations to predict the clustering of dark matter in redshift space in f(R) modified gravity cosmologies. This is the first time that the nonlinear matter and velocity fields have been resolved to such a high level of ac curacy over a broad range of scales in this class of models. We find significant deviations from the clustering signal in standard gravity, with an enhanced boost in power on large scales and stronger damping on small scales in the f(R) models compared to GR at redshifts z<1. We measure the velocity divergence (P_theta theta) and matter (P_delta delta) power spectra and find a large deviation in the ratios sqrt{P_theta theta/P_delta delta} and P_delta theta/P_deltadelta, between the f(R) models and GR for 0.03<k/(h/Mpc)<0.5. In linear theory these ratios equal the growth rate of structure on large scales. Our results show that the simulated ratios agree with the growth rate for each cosmology (which is scale dependent in the case of modified gravity) only for extremely large scales, k<0.06h/Mpc at z=0. The velocity power spectrum is substantially different in the f(R) models compared to GR, suggesting that this observable is a sensitive probe of modified gravity. We demonstrate how to extract the matter and velocity power spectra from the 2D redshift space power spectrum, P(k,mu), and can recover the nonlinear matter power spectrum to within a few percent for k<0.1h/Mpc. However, the model fails to describe the shape of the 2D power spectrum demonstrating that an improved model is necessary in order to reconstruct the velocity power spectrum accurately. The same model can match the monopole moment to within 3% for GR and 10% for the f(R) cosmology at k<0.2 h/Mpc at z=1. Our results suggest that the extraction of the velocity power spectrum from future galaxy surveys is a promising method to constrain deviations from GR.
Cosmic voids in the large-scale structure of the Universe affect the peculiar motions of objects in their vicinity. Although these motions are difficult to observe directly, the clustering pattern of their surrounding tracers in redshift space is inf luenced in a unique way. This allows to investigate the interplay between densities and velocities around voids, which is solely dictated by the laws of gravity. With the help of $N$-body simulations and derived mock-galaxy catalogs we calculate the average density fluctuations around voids identified with a watershed algorithm in redshift space and compare the results with the expectation from general relativity and the $Lambda$CDM model. We find linear theory to work remarkably well in describing the dynamics of voids. Adopting a Bayesian inference framework, we explore the full posterior of our model parameters and forecast the achievable accuracy on measurements of the growth rate of structure and the geometric distortion through the Alcock-Paczynski effect. Systematic errors in the latter are reduced from $sim15%$ to $sim5%$ when peculiar velocities are taken into account. The relative parameter uncertainties in galaxy surveys with number densities comparable to the SDSS MAIN (CMASS) sample probing a volume of $1h^{-3}{rm Gpc}^3$ yield $sigma_{f/b}left/(f/b)right.sim2%$ ($20%$) and $sigma_{D_AH}/D_AHsim0.2%$ ($2%$), respectively. At this level of precision the linear-theory model becomes systematics dominated, with parameter biases that fall beyond these values. Nevertheless, the presented method is highly model independent; its viability lies in the underlying assumption of statistical isotropy of the Universe.
The $Lambda$CDM concordance model is very successful at describing our Universe with high accuracy and few parameters. Despite its successes, a few tensions persist; most notably, the best-fit $Lambda$CDM model, as derived from the Planck CMB data, l argely overpredicts the abundance of SZ clusters when using their standard mass calibration. Whether this is a sign of an incorrect calibration or the need for new physics remains a matter of debate. Here we examined two simple extensions of the standard model and their ability to release this tension: massive neutrinos and a simple modified gravity model via a non-standard growth index $gamma$. We used both the Planck CMB and SZ cluster counts as datasets, with or without local X-ray clusters. In the case of massive neutrinos, the SZ calibration $(1-b)$ is constrained to $0.59^{+0.03}_{-0.04}$ (68%), more than 5$sigma$ away from its standard value $sim0.8$. We found little correlation between $sum m_ u$ and $(1-b)$, corroborating previous conclusions derived from X-ray clusters; massive neutrinos do not alleviate the cluster-CMB tension. With our simple $gamma$ model, we found a large correlation between calibration and growth index but contrary to local X-ray clusters, SZ clusters are able to break the degeneracy between the two thanks to their extended $z$ range. The calibration $(1-b)$ was then constrained to $0.60^{+0.05}_{-0.07}$, leading to an interesting constraint on $gamma=0.60pm 0.13$. When both massive neutrinos and modified gravity were allowed, preferred values remained centred on standard $Lambda$CDM values, but $(1-b)sim0.8$ was allowed (though only at the $2sigma$ level) provided $sum m_ usim0.34 $ eV and $gammasim0.8$. We conclude that massive neutrinos do not relieve the cluster-CMB tension and that a calibration close to the standard value $0.8$ would call for new physics in the gravitational sector.
We extend the scale-dependent Gaussian Streaming Model (GSM) to produce analytical predictions for the anisotropic redshift-space correlation function for biased tracers in modified gravity models. Employing the Convolution Lagrangian Perturbation Theory (CLPT) re-summation scheme, with a local Lagrangian bias schema provided by the peak-background split formalism, we predict the necessary ingredients that enter the GSM, the real-space halo pairwise velocity and the pairwise velocity dispersion. We further consider effective field theory contributions to the pairwise velocity dispersion in order to model correctly its large scale behavior. We apply our method on two widely-considered modified gravity models, the chameleon-screened f(R) Hu-Sawicki model and the nDGP Vainshtein model and compare our predictions against state-of-the-art N-body simulations for these models. We demonstrate that the GSM approach to predict the monopole and the quadrupole of the redshift-space correlation function for halos, gives very good agreement with the simulation data, for a wide range of screening mechanisms, levels of screening and halo masses at z=0.5 and z=1. Our work shows the applicability of the GSM, for cosmologies beyond GR, demonstrating that it can serve as a powerful predictive tool for the next stage of cosmological surveys like DESI, Euclid, LSST and WFIRST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا