ﻻ يوجد ملخص باللغة العربية
We study the time-independent scattering of a planar gravitational wave propagating in the curved spacetime of a compact body with a polytropic equation of state. We begin by considering the geometric-optics limit, in which the gravitational wave propagates along null geodesics of the spacetime; we show that a wavefront passing through a neutron star of tenuity $R/M = 6$ will be focussed at a cusp caustic near the stars surface. Next, using the linearized Einstein Field Equations on a spherically-symmetric spacetime, we construct the metric perturbations in the odd and even parity sectors; and, with partial-wave methods, we numerically compute the gravitational scattering cross section from helicity-conserving and helicity-reversing amplitudes. At long wavelengths, the cross section is insensitive to stellar structure and, in the limit $M omega rightarrow 0$, it reduces to the known low-frequency approximation of the black hole case. At higher frequencies $M omega gtrsim 1$, the gravitational wave probes the internal structure of the body. In essence, we find that the gravitational wave cross section is similar to that for a massless scalar field, although with subtle effects arising from the non-zero helicity-reversing amplitude, and the coupling in the even-parity sector between the gravitational wave and the fluid of the body. The cross section exhibits emph{rainbow scattering} with an Airy-type oscillation superposed on a Rutherford cross section. We show that the rainbow angle, which arises from a stationary point in the geodesic deflection function, depends on the polytropic index. In principle, rainbow scattering provides a diagnostic of the equation of state of the compact body; but, in practice, this requires a high-frequency astrophysical source of gravitational waves.
We investigate the wave effects of gravitational waves (GWs) using numerical simulations with the finite element method (FEM) based on the publicly available code {it deal.ii}. We robustly test our code using a point source monochromatic spherical wa
The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The role of twist in the relation of the Rosen coordinates adapted to a null congruence with the fund
We give a higher even dimensional extension of vacuum colliding gravitational plane waves with the combinations of collinear and non-collinear polarized four-dimensional metric. The singularity structure of space-time depends on the parameters of the solution.
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einsteins vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by obse
The behaviour of a test electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einsteins general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like i