ﻻ يوجد ملخص باللغة العربية
The $Y(4260)$ has been one of the most puzzling pieces among the so-called $XYZ$ states. In this paper, we try to gain insights into the structure of the $Y(4260)$ from the light-quark perspective. We study the dipion invariant mass spectrum of the $e^+ e^- to Y(4260) to J/psi pi^+pi^-$ process and the ratio of the cross sections ${sigma(e^+e^- to J/psi K^+ K^-)}/{sigma(e^+e^- to J/psi pi^+pi^-)}$. In particular, we consider the effects of different light-quark SU(3) eigenstates inside the $Y(4260)$. The strong pion-pion final-state interactions as well as the $Kbar{K}$ coupled channel in the $S$-wave are taken into account in a model-independent way using dispersion theory. We find that the SU(3) octet state plays a significant role in these transitions, implying that the $Y(4260)$ contains a large light-quark component. Our findings suggest that the $Y(4260)$ is neither a hybrid nor a conventional charmonium state, and they are consistent with the $Y(4260)$ having a sizeable $bar D D_1$ component which, however, is not completely dominant.
We study the processes $e^+ e^- to Y(4260) to J/psi pipi(Kbar{K})$. The strong final-state interactions, especially the coupled-channel ($pipi$ and $Kbar{K}$) final-state interaction in the $S$-wave are taken into account in a model-independent way u
Light front wave functions motivated by holographic constructions are used to study Bloom-Gilman duality of deep inelastic scattering. Separate expressions for structure functions in terms of quark and hadronic degrees of freedom are presented, with
We report the results of a search for the $B to Y(4260) K, ~Y(4260)to J/psipi^+pi^-$ decays. This study is based on a data sample corresponding to an integrated luminosity of 711~fb$^{-1}$, collected at the $Upsilon(4S)$ resonance with the Belle dete
The observed Y(4260)to gamma + X(3872) decay is a natural consequence of the diquark-antidiquark description of Y and X resonances. In this note we attempt an estimate of the transition rate, Gamma_{rm rad}, by a non-relativistic calculation of the e
We address the propagation and hadronization of a struck quark by studying the gauge invariance of the color-averaged cut quark propagator, and by relating this to the single inclusive quark fragmentation correlator by means of new sum rules. Using s