ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping quantum process tomography via a perturbative ansatz

70   0   0.0 ( 0 )
 نشر من قبل Luke Govia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum process tomography has become increasingly critical as the need grows for robust verification and validation of candidate quantum processors. Here, we present an approach for efficient quantum process tomography that uses a physically motivated ansatz for an unknown quantum process. Our ansatz bootstraps to an effective description for an unknown process on a multi-qubit processor from pairwise two-qubit tomographic data. Further, our approach can inherit insensitivity to system preparation and measurement error from the two-qubit tomography scheme. We benchmark our approach using numerical simulation of noisy three-qubit gates, and show that it produces highly accurate characterizations of quantum processes. Further, we demonstrate our approach experimentally, building three-qubit gate reconstructions from two-qubit tomographic data.



قيم البحث

اقرأ أيضاً

66 - Yonatan Gazit , Hui Khoon Ng , 2019
Quantum process tomography --- a primitive in many quantum information processing tasks --- can be cast within the framework of the theory of design of experiment (DoE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DoE for use in quantum problems. The classical techniques from DoE cannot, however, be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here, we properly formulate quantum process tomography as a DoE problem, and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters, and point out interesting features in the quantum problem absent in the usual classical setting.
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol wher e only $2d-1$ measurement outcomes are used to accomplish the QST for $all$ pure states. This idea is then extended to study QPT for unitary channels, where an adaptive unitary process tomography (AUPT) protocol of $d^2+d-1$ measurement outcomes is constructed for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system. We examine the performance of the AUPT protocol when applied to Hadamard gate, $T$ gate ($pi/8$ phase gate), and controlled-NOT gate, respectively, as these gates form the universal gate set for quantum information processing purpose. As a comparison, standard QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitary channels via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of fidelity.
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this wo rk, we put forward a quantum machine learning algorithm which approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the quantum Hamiltonian evolution and random quantum circuits up to $8$ qubits. Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measure ment operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography can not be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order to make the resulting optimization tractable we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.
We present a compressive quantum process tomography scheme that fully characterizes any rank-deficient completely-positive process with no a priori information about the process apart from the dimension of the system on which the process acts. It use s randomly-chosen input states and adaptive output von Neumann measurements. Both entangled and tensor-product configurations are flexibly employable in our scheme, the latter which naturally makes it especially compatible with many-body quantum computing. Two main features of this scheme are the certification protocol that verifies whether the accumulated data uniquely characterize the quantum process, and a compressive reconstruction method for the output states. We emulate multipartite scenarios with high-order electromagnetic transverse modes and optical fibers to positively demonstrate that, in terms of measurement resources, our assumption-free compressive strategy can reconstruct quantum processes almost equally efficiently using all types of input states and basis measurement operations, operations, independent of whether or not they are factorizable into tensor-product states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا