ﻻ يوجد ملخص باللغة العربية
Active galactic nuclei (AGNs) have been attracting research attention due to their special observable properties. Specifically, a majority of AGNs are detected by Fermi-LAT missions, but not by Fermi-LAT, which raises the question of whether any differences exist between the two. To answer this issue, we compile a sample of 291 superluminal AGNs (189 FDSs and 102 non-FDSs) from available multi-wavelength radio, optical, and X-ray (or even $gamma$-ray) data and Doppler factors and proper motion ($mu$) (or apparent velocity ($beta_{rm{app}}$)); calculated the apparent velocity from their proper motion, Lorentz factor ($Gamma$), viewing angle ($phi$) and co-moving viewing angle ($phi_{co}$) for the sources with available Doppler factor ($delta$); and performed some statistical analyses for both types. Our study indicated that1. In terms of average values, FDSs have higher proper motions ($mu$), apparent velocities ($beta_{rm app}$), Doppler factor ($delta$), Lorentz factor ($Gamma$), and smaller viewing angle ($phi$). Nevertheless, there is no clear difference in co-moving viewing angles ($phi_{rm co}$).
We perform a multi-band statistical analysis of core-dominated superluminal active galactic nuclei (AGN) detected with Fermi Large Area Telescope (LAT). The detection rate of $gamma$-ray jets is found to be high for optically bright AGN. There is a s
Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of
The bright long gamma-ray burst GRB 141207A was observed by the {it Fermi Gamma-ray Space Telescope} and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirica
Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is