ﻻ يوجد ملخص باللغة العربية
Recent experiments reported an unusual nematic behavior of heavily hole-doped pnictides $A$Fe$_{2}$As$_{2}$, with alkali $A$ = Rb, Cs. In contrast to the $B_{2g}$ nematic order of the parent $Ae$Fe$_{2}$As$_{2}$ compounds (with alkaline earth $Ae$ = Sr, Ba), characterized by unequal nearest-neighbor Fe-Fe bonds, in the hole-doped systems nematic order is observed in the $B_{1g}$ channel, characterized by unequal next-nearest-neighbor Fe-Fe (diagonal Fe-As-Fe) bonds. In this work, using density functional theory, we attribute this behavior to the evolution of the magnetic ground state along the series $Ae_{1-x}A_{x}$Fe$_{2}$As$_{2}$, from single stripes for small $x$ to double stripes for large $x$. Our simulations using the reduced Stoner theory show that fluctuations of Fe moments are essential for the stability of the double-stripe configuration. We propose that the change in the nature of the magnetic ground state is responsible for the change in the symmetry of the vestigial nematic order that it supports.
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid
The elastoresistivity tensor $m_{ij,kl}$ relates changes in resistivity to strains experienced by a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in
We theoretically study the spin fluctuation and superconductivity in La1111 and Sm1111 iron-based superconductors for a wide range of electron doping. When we take into account the band structure variation by electron doping, the hole Fermi surface o
Recently we reported an enhanced superconductivity in restacked monolayer TaS_2 nanosheets compared with the bulk TaS_2, pointing to the exotic physical properties of low dimensional systems. Here we tune the superconducting properties of this system
Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, ev