ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Helical Hinge Zero Modes in an Fe-Based Superconductor

224   0   0.0 ( 0 )
 نشر من قبل Mason Gray
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-Based Superconductor FeTe$_{0.55}$Se$_{0.45}$ (FTS) may also be topologically non-trivial. Should the superconducting order be s$^{pm}$, then FTS could be a higher order topological superconductor with Helical Hinge Zero Modes (HHZM).To test the presence of these modes we developed a new method for making normal metal/superconductor junctions via 2D atomic crystal heterostructures. As expected,junctions in contact with the hinge reveal a sharp zero-bias anomaly whose suppression with temperature and magnetic field only along the c-axis are completely consistent with the presence of HHZM. This feature is completely absent when tunneling purely into the c-axis, and its characteristics are also inconsistent with other origins of zero bias anomalies. Furthermore, additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus we provide evidence that FTS is indeed a higher order topological superconductor as well as a new method for probing 2D atomic crystals.



قيم البحث

اقرأ أيضاً

Motivated by recent experiments on FeTe$_{1-x}$Se$_{x}$, we construct an explicit minimal model of an iron-based superconductor with band inversion at the $Z$ point and non-topological bulk $s_{pm}$ pairing. While there has been considerable interest in Majorana zero modes localized at vortices in such systems, we find that our model - without any vortices - intrinsically supports 1D helical Majorana modes localized at the hinges between (001) and (100) or (010) surfaces, suggesting that this is a viable platform for observing higher-order topological superconductivity. We provide a general theory for these hinge modes and discuss their stability and experimental manifestation. Our work indicates the possible experimental observability of hinge Majoranas in iron-based topological superconductors.
In the presence of certain symmetries, three-dimensional Dirac semimetals can harbor not only surface Fermi arcs, but also surface Dirac cones. Motivated by the experimental observation of rotation-symmetry-protected Dirac semimetal states in iron-ba sed superconductors, we investigate the potential intrinsic topological phases in a $C_{4z}$-rotational invariant superconducting Dirac semimetal with $s_{pm}$-wave pairing. When the normal state harbors only surface Fermi arcs on the side surfaces, we find that an interesting gapped superconducting state with a quartet of Majorana cones on each side surface can be realized, even though the first-order topology of its bulk is trivial. When the normal state simultaneously harbors surface Fermi arcs and surface Dirac cones, we find that a second-order time-reversal invariant topological superconductor with helical Majorana hinge states can be realized. The criteria for these two distinct topological phases have a simple geometric interpretation in terms of three characteristic surfaces in momentum space. By reducing the bulk material to a thin film normal to the axis of rotation symmetry, we further find that a two-dimensional first-order time-reversal invariant topological superconductor can be realized if the inversion symmetry is broken by applying a gate voltage. Our work reveals that diverse topological superconducting phases and types of Majorana modes can be realized in superconducting Dirac semimetals.
Since the proposal of monopole Cooper pairing in Ref. [1], considerable research efforts have been dedicated to the study of Copper pair order parameters constrained (or obstructed) by the nontrivial normal-state band topology at Fermi surfaces. In t he current work, we propose a new type of topologically obstructed Cooper pairing, which we call Euler obstructed Cooper pairing. The Euler obstructed Cooper pairing widely exists between two Fermi surfaces with nontrivial band topology characterized by nonzero Euler numbers; such Fermi surfaces can exist in the $PT$-protected spinless-Dirac/nodal-line semimetals with negligible spin-orbit coupling, where $PT$ is the space-time inversion symmetry. An Euler obstructed pairing channel must have pairing nodes on the pairing-relevant Fermi surfaces, and the total winding number of the pairing nodes is determined by the sum or difference of the Euler numbers on the Fermi surfaces. In particular, we find that when the normal state is nonmagnetic and the pairing is weak, a sufficiently-dominant Euler obstructed pairing channel with zero total momentum leads to nodal superconductivity. If the Fermi surface splitting is small, the resultant nodal superconductor hosts hinge Majorana zero modes, featuring the first class of higher-order nodal superconductivity originating from the topologically obstructed Cooper pairing. The possible dominance of the Euler obstructed pairing channel near the superconducting transition and the robustness of the hinge Majorana zero modes against disorder are explicitly demonstrated using effective or tight-binding models.
The search for Majorana bound state (MBS) has recently emerged as one of the most active research areas in condensed matter physics, fueled by the prospect of using its non-Abelian statistics for robust quantum computation. A highly sought-after plat form for MBS is two-dimensional topological superconductors, where MBS is predicted to exist as a zero-energy mode in the core of a vortex. A clear observation of MBS, however, is often hindered by the presence of additional low-lying bound states inside the vortex core. By using scanning tunneling microscope on the newly discovered superconducting Dirac surface state of iron-based superconductor FeTe1-xSex (x = 0.45, superconducting transition temperature Tc = 14.5 K), we clearly observe a sharp and non-split zero-bias peak inside a vortex core. Systematic studies of its evolution under different magnetic fields, temperatures, and tunneling barriers strongly suggest that this is the case of tunneling to a nearly pure MBS, separated from non-topological bound states which is moved away from the zero energy due to the high ratio between the superconducting gap and the Fermi energy in this material. This observation offers a new, robust platform for realizing and manipulating MBSs at a relatively high temperature.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا