ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Bayesian analysis of large angular scale CMB temperature anomalies

80   0   0.0 ( 0 )
 نشر من قبل Shabbir Shaikh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic microwave background measurements show an agreement with the concordance cosmology model except for a few notable anomalies: Power Suppression, the lack of large scale power in the temperature data compared to what is expected in the concordance model, and Cosmic Hemispherical Asymmetry, a dipolar breakdown of statistical isotropy. An expansion of the CMB covariance in Bipolar Spherical Harmonics naturally parametrizes both these large-scale anomalies, allowing us to perform an exhaustive, fully Bayesian joint analysis of the power spectrum and violations of statistical isotropy up to the dipole level. Our analysis sheds light on the scale dependence of the Cosmic Hemispherical Asymmetry. Assuming a scale-dependent dipole modulation model with a two-parameter power law form, we explore the posterior pdf of amplitude $A(l = 16)$ and the power law index $alpha$ and find the maximum a posteriori values $A_*(l = 16) = 0.064 pm 0.022$ and $alpha_* = -0.92 pm 0.22$. The maximum a posteriori direction associated with the Cosmic Hemispherical Asymmetry is $(l,b) = (247.8^o, -19.6^o)$ in Galactic coordinates, consistent with previous analyses. We evaluate the Bayes factor $B_{SI-DM}$ to compare the Cosmic Hemispherical Asymmetry model with the isotropic model. The data prefer but do not substantially favor the anisotropic model ($B_{SI-DM}=0.4$). We consider several priors and find that this evidence ratio is robust to prior choice. The large-scale power suppression does not soften when jointly inferring both the isotropic power spectrum and the parameters of the asymmetric model, indicating no evidence that these anomalies are coupled.

قيم البحث

اقرأ أيضاً

Several satellite missions have uncovered a series of potential anomalies in the fluctuation spectrum of the cosmic microwave background temperature, including: (1) an unexpectedly low level of correlation at large angles, manifested via the angular correlation function, C(theta); and (2) missing power in the low multipole moments of the angular power spectrum, C_ell. Their origin is still debated, however, due to a persistent lack of clarity concerning the seeding of quantum fluctuations in the early Universe. A likely explanation for the first of these appears to be a cutoff, k_min=(3.14 +/- 0.36) x 10^{-4} Mpc^{-1}, in the primordial power spectrum, P(k). Our goal in this paper is twofold: (1) we examine whether the same k_min can also self-consistently explain the missing power at large angles, and (2) we confirm that the of this cutoff in P(k) does not adversely affect the remarkable consistency between the prediction of Planck-LCDM and the Planck measurements at ell > 30. We use the publicly available code CAMB to calculate the angular power spectrum, based on a line-of-sight approach. The code is modified slightly to include the additional parameter (i.e., k_min) characterizing the primordial power spectrum. In addition to this cutoff, the code optimizes all of the usual standard-model parameters. In fitting the angular power spectrum, we find an optimized cutoff, k_min = 2.04^{+1.4}_{-0.79} x 10^{-4} Mpc^{-1}, when using the whole range of ells, and k_min=3.3^{+1.7}_{-1.3} x 10^{-4} Mpc^{-1}, when fitting only the range ell < 30, where the Sachs-Wolfe effect is dominant. These are fully consistent with the value inferred from C(theta), suggesting that both of these large-angle anomalies may be due to the same truncation in P(k).
In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.
We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of $10^circ$ is also observed. However, the $p$-value of these two deviations increase above the $6%$ when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is $<1%$ is detected in the eccentricity tensor.
We present a mitigation strategy to reduce the impact of non-linear galaxy bias on the joint `$3 times 2 $pt cosmological analysis of weak lensing and galaxy surveys. The $Psi$-statistics that we adopt are based on Complete Orthogonal Sets of E/B Int egrals (COSEBIs). As such they are designed to minimise the contributions to the observable from the smallest physical scales where models are highly uncertain. We demonstrate that $Psi$-statistics carry the same constraining power as the standard two-point galaxy clustering and galaxy-galaxy lensing statistics, but are significantly less sensitive to scale-dependent galaxy bias. Using two galaxy bias models, motivated by halo-model fits to data and simulations, we quantify the error in a standard $3 times 2$pt analysis where constant galaxy bias is assumed. Even when adopting conservative angular scale cuts, that degrade the overall cosmological parameter constraints, we find of order $1 sigma$ biases for Stage III surveys on the cosmological parameter $S_8 = sigma_8(Omega_{rm m}/0.3)^{alpha}$. This arises from a leakage of the smallest physical scales to all angular scales in the standard two-point correlation functions. In contrast, when analysing $Psi$-statistics under the same approximation of constant galaxy bias, we show that the bias on the recovered value for $S_8$ can be decreased by a factor of $sim 2$, with less conservative scale cuts. Given the challenges in determining accurate galaxy bias models in the highly non-linear regime, we argue that $3 times 2$pt analyses should move towards new statistics that are less sensitive to the smallest physical scales.
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m oments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا