ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature regularization near contacts with stretched elastic tubes

129   0   0.0 ( 0 )
 نشر من قبل Bhargav Rallabandi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bringing a rigid object into contact with a soft elastic tube causes the tube to conform to the surface of the object, resulting in contact lines. The curvature of the tube walls near these contact lines is often large and is typically regularized by the finite bending rigidity of the tube. Here, we show using experiments and a F{o}ppl--von K{a}rm{a}n-like theory that a second mechanism of curvature regularization occurs when the tube is axially stretched. The radius of curvature obtained is unrelated to the bending rigidity of the tube walls, increases with the applied stretching force and decreases with sheet thickness, in contrast with the effects of finite bending rigidity. %Moreover, the axial force decreases the contact area between the tube and the intruding object, potentially reducing the drag necessary to propel the object through the tube. We show that these features are due to an interplay between geometry and mechanics specific to elastic tubes, but one that is absent from both planar sheets and spherical shells.

قيم البحث

اقرأ أيضاً

Many applications in vision require estimation of thin structures such as boundary edges, surfaces, roads, blood vessels, neurons, etc. Unlike most previous approaches, we simultaneously detect and delineate thin structures with sub-pixel localizatio n and real-valued orientation estimation. This is an ill-posed problem that requires regularization. We propose an objective function combining detection likelihoods with a prior minimizing curvature of the center-lines or surfaces. Unlike simple block-coordinate descent, we develop a novel algorithm that is able to perform joint optimization of location and detection variables more effectively. Our lower bound optimization algorithm applies to quadratic or absolute curvature. The proposed early vision framework is sufficiently general and it can be used in many higher-level applications. We illustrate the advantage of our approach on a range of 2D and 3D examples.
We study the melting of a double stranded DNA in the presence of stretching forces, via 3D Monte-Carlo simulations, exactly solvable models and heuristic arguments. The resulting force-temperature phase diagram is dramatically different for the cases where the force is applied to only one strand or to both. Different assumptions on the monomer size of single and double stranded DNA lead to opposite conclusions as to whether DNA melts or not as it overstretches.
We study the effect of rapid quench to zero temperature in a model with competing interactions, evolving through conserved spin dynamics. In a certain regime of model parameters, we find that the model belongs to the broader class of kinetically cons trained models, however, the dynamics is different from that of a glass. The system shows stretched exponential relaxation with the unusual feature that the relaxation time diverges as a power of the system size. Explicitly, we find that the spatial correlation function decays as $exp(-2r/sqrt{L})$ as a function of spatial separation $r$ in a system with $L$ sites in steady state, while the temporal auto-correlation function follows $exp(-(t/tau_L)^{1/2})$, where $t$ is the time and $tau_L$ proportional to $L$. In the coarsening regime, after time $t_w$, there are two growing length scales, namely $mathcal{L}(t_w) sim t_w^{1/2}$ and $mathcal{R}(t_w) sim t_w^{1/4}$; the spatial correlation function decays as $exp(-r/ mathcal{R}(t_w))$. Interestingly, the stretched exponential form of the auto-correlation function of a single typical sample in steady state differs markedly from that averaged over an ensemble of initial conditions resulting from different quenches; the latter shows a slow power law decay at large times.
We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Greens function for incremental displacements on a pre-s tretched, neo-Hookean, substrate (L.H. Lee textit{J. Mech. Phys. Sol.} textbf{56} (2008) 2957-2971), a model is derived for both adhesive and non-adhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios $lambda_x$ and $lambda_y$ of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. for stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical prediction are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.
We report on the frictional behaviour of thin poly(dimethylacrylamide) (PDMA) hydrogels films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and applied normal l oads with the contact fully immersed in water. In addition to friction force measurements, a novel optical set-up is designed to image the shape of the contact under steady-state sliding. The velocity-dependence of both friction force $F_t$ and contact shape is found to be controlled by a Peclet number Pe defined as the ratio of the time $tau$ needed to drain the water out of the contact region to a contact time $a/v$, where $v$ is the sliding velocity and $a$ is the contact radius. When Pe<1, the equilibrium circular contact achieved under static normal indentation remains unchanged during sliding. Conversely, for Pe>1, a decrease in the contact area is observed together with the development of a contact asymmetry when the sliding velocity is increased. A maximum in $F_t$ is also observed at Pe~$approx$~1. These experimental observations are discussed in the light of a poroelastic contact model based on a thin film approximation. This model indicates that the observed changes in contact geometry are due to the development of a pore pressure imbalance when Pe>1. An order of magnitude estimate of the friction force and its dependence on normal load and velocity is also provided under the assumption that most of the frictional energy is dissipated by poroelastic flow at the leading and trailing edges of the sliding contact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا