ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal DMRG for highly frustrated quantum spin chains: a user perspective

81   0   0.0 ( 0 )
 نشر من قبل J. Schnack
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal DMRG is investigated with emphasis of employability in molecular magnetism studies. To this end magnetic observables at finite temperature are evaluated for two one-dimensional quantum spin systems: a Heisenberg chain with nearest-neighbor antiferromagnetic interaction and a frustrated sawtooth (delta) chain. It is found that thermal DMRG indeed accurately approximates magnetic observables for the chain as well as for the sawtooth chain, but in the latter case only for sufficiently high temperatures. We speculate that the reason is due to the peculiar structure of the low-energy spectrum of the sawtooth chain induced by frustration.



قيم البحث

اقرأ أيضاً

The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow us to identify uniquely the Wess-Zumino-Witten models capturing the low energy sectors of the models we consider.
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord er-wave (BOW) phases with finite-range spin correlations. Exact diagonalization and density matrix renormalization group (DMRG) calculations of S(q) indicate a decoupled phase with QLRO and q_m = pi/2 in chains with large antiferromagnetic exchange between second neighbors. S(q_m) identifies quantum phase transitions based on GS spin correlations.
We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-$S$ chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong ex ternal magnetic field. It is shown that the field induces a phase with spontaneously broken chiral symmetry, in line with earlier theoretical predictions. We present results on the field dependence of the order parameter and the critical exponents.
167 - M. Pregelj , O. Zaharko , M. Herak 2016
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $b eta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا