ترغب بنشر مسار تعليمي؟ اضغط هنا

An adaptive simulation of nonlinear heat and moisture transfer as a boundary value problem

52   0   0.0 ( 0 )
 نشر من قبل Denys Dutykh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Suelen Gasparin




اسأل ChatGPT حول البحث

This work presents an alternative view on the numerical simulation of diffusion processes applied to the heat and moisture transfer through porous building materials. Traditionally, by using the finite-difference approach, the discretization follows the Method Of Lines (MOL), when the problem is first discretized in space to obtain a large system of coupled Ordinary Differential Equations (ODEs). Thus, this paper proposes to change this viewpoint. First, we discretize in time to obtain a small system of coupled ODEs, which means instead of having a Cauchy (Initial Value) Problem (IVP), we have a Boundary Value Problem (BVP). Fortunately, BVPs can be solved efficiently today using adaptive collocation methods of high order. To demonstrate the benefits of this new approach, three case studies are presented, in which one of them is compared with experimental data. The first one considers nonlinear heat and moisture transfer through one material layer while the second one considers two material layers. Results show how the nonlinearities and the interface between materials are easily treated, by reasonably using a fourth-order adaptive method. Finally, the last case study compares numerical results with experimental measurements, showing a good agreement.



قيم البحث

اقرأ أيضاً

This work presents an efficient numerical method based on spectral expansions for simulation of heat and moisture diffusive transfers through multilayered porous materials. Traditionally, by using the finite-difference approach, the problem is discre tized in time and space domains (Method of lines) to obtain a large system of coupled Ordinary Differential Equations (ODEs), which is computationally expensive. To avoid such a cost, this paper proposes a reduced-order method that is faster and accurate, using a much smaller system of ODEs. To demonstrate the benefits of this approach, tree case studies are presented. The first one considers nonlinear heat and moisture transfer through one material layer. The second case - highly nonlinear - imposes a high moisture content gradient - simulating a rain like condition - over a two-layered domain, while the last one compares the numerical prediction against experimental data for validation purposes. Results show how the nonlinearities and the interface between materials are easily and naturally treated with the spectral reduced-order method. Concerning the reliability part, predictions show a good agreement with experimental results, which confirm robustness, calculation efficiency and high accuracy of the proposed approach for predicting the coupled heat and moisture transfer through porous materials.
339 - T.Heinzl , E. Werner 1993
In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the pr oblem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using the method of Faddeev and Jackiw for dealing with first-order Lagrangians. For the prototype field theory of massive scalar fields in 1+1 dimensions, we find that initial conditions for fixed light cone time {sl and} boundary conditions in the spatial variable are sufficient to yield a consistent commutator algebra. Data on a second lightlike hyperplane are not necessary. Hamiltonian and Euler-Lagrange equations of motion become equivalent; the description of the dynamics remains canonical and simple. In this way we justify the approach of discretised light cone quantisation.
100 - Madalina Deaconu 2016
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri ch-let problem for Laplaces equation, its implementation is rather easy. The definition of the random walk is based on a new mean value formula for the heat equation. The convergence results and numerical examples permit to emphasize the efficiency and accuracy of the algorithm.
We study mode-locking in disordered media as a boundary-value problem. Focusing on the simplest class of mode-locking models which consists of a single driven overdamped degree-of-freedom, we develop an analytical method to obtain the shape of the Ar nold tongues in the regime of low ac-driving amplitude or high ac-driving frequency. The method is exact for a scalloped pinning potential and easily adapted to other pinning potentials. It is complementary to the analysis based on the well-known Shapiros argument that holds in the perturbative regime of large driving amplitudes or low driving frequency, where the effect of pinning is weak.
We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as boson ic reservoirs, coupled perfectly to a scattering center consisting of the two interfaces and vacuum. Using Rytovs fluctuational electrodynamics and assuming Kirchhoffs circuital law, we calculate the heat flow in each bath. This allows for explicit evaluation of a conductance matrix, from which one readily verifies B{u}ttiker symmetry. Thus, radiative heat transfer in layered media with conductive interfaces becomes a Landauer-B{u}ttiker transport problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا