ﻻ يوجد ملخص باللغة العربية
This work presents an alternative view on the numerical simulation of diffusion processes applied to the heat and moisture transfer through porous building materials. Traditionally, by using the finite-difference approach, the discretization follows the Method Of Lines (MOL), when the problem is first discretized in space to obtain a large system of coupled Ordinary Differential Equations (ODEs). Thus, this paper proposes to change this viewpoint. First, we discretize in time to obtain a small system of coupled ODEs, which means instead of having a Cauchy (Initial Value) Problem (IVP), we have a Boundary Value Problem (BVP). Fortunately, BVPs can be solved efficiently today using adaptive collocation methods of high order. To demonstrate the benefits of this new approach, three case studies are presented, in which one of them is compared with experimental data. The first one considers nonlinear heat and moisture transfer through one material layer while the second one considers two material layers. Results show how the nonlinearities and the interface between materials are easily treated, by reasonably using a fourth-order adaptive method. Finally, the last case study compares numerical results with experimental measurements, showing a good agreement.
This work presents an efficient numerical method based on spectral expansions for simulation of heat and moisture diffusive transfers through multilayered porous materials. Traditionally, by using the finite-difference approach, the problem is discre
In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the pr
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri
We study mode-locking in disordered media as a boundary-value problem. Focusing on the simplest class of mode-locking models which consists of a single driven overdamped degree-of-freedom, we develop an analytical method to obtain the shape of the Ar
We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as boson