ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-150: A transiting hot Jupiter in the TESS southern CVZ

158   0   0.0 ( 0 )
 نشر من قبل Caleb Ca\\~nas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14} M_{J}$, $R_{p}=1.38pm0.04 R_{J}$) orbiting a middle-aged star ($log g=4.152^{+0.030}_{-0.043}$) in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone ($beta=-79.59^{circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.

قيم البحث

اقرأ أيضاً

We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-minute cadence Transiting Exoplanet Survey Satellite TESS photometry from Sector 1 and thorough ly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE) and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254pm0.016 R_J$, massive ($2.61^{+0.19}_{-0.12} M_J$) hot Jupiter in a $5.857$-day orbit, while TOI-163b is an inflated ($R_P$ = $1.478^{+0.022}_{-0.029} R_J$, $M_P$ = $1.219pm0.11 M_J$) hot Jupiter on a $P$ = $4.231$-day orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization timescale which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization --- in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).
Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Sate llite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 d and 3.739 d, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of $1.463^{+0.10}_{-0.096} M_J$ and a radius of $1.02^{+0.71}_{-0.29} R_J$. TOI 905 b is a classical hot Jupiter as well, with a mass of $0.667^{+0.042}_{-0.041} M_J$ and radius of $1.171^{+0.053}_{-0.051} R_J$. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ~ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of $0.994^{+0.083}_{-0.049}$, making it one of only ~20 known systems to exhibit a grazing transit and one of the brightest host stars among them. TOI 564 b is therefore one of the most attractive systems to search for additional non-transiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over the time scale of several years.
We report the detection of the first circumbinary planet found by TESS. The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30-minute cadence and in sectors 4 through 12 at two-minute cadence. It consists of two stars with m asses of 1.1 MSun and 0.3 MSun on a slightly eccentric (0.16), 14.6-day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ~6.9 REarth and was observed to make three transits across the primary star of roughly equal depths (~0.2%) but different durations -- a common signature of transiting circumbinary planets. Its orbit is nearly circular (e ~ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ~1 degree. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for circumbinary planets, and provides further understanding of the formation and evolution of planets orbiting close binary stars.
129 - Hui Zhang , Zhouyi Yu , Ensi Liang 2018
We report first results from the CHinese Exoplanet Searching Program from Antarctica (CHESPA)---a wide-field high-resolution photometric survey for transiting exoplanets carried out using telescopes of the AST3 (Antarctic Survey Telescopes times 3) p roject. There are now three telescopes (AST3-I, AST3-II, and CSTAR-II) operating at Dome A---the highest point on the Antarctic Plateau---in a fully automatic and remote mode to exploit the superb observing conditions of the site, and its long and uninterrupted polar nights. The search for transiting exoplanets is one of the key projects for AST3. During the Austral winters of 2016 and 2017 we used the AST3-II telescope to survey a set of target fields near the southern ecliptic pole, falling within the continuous viewing zone of the TESS mission citep{Ricker10}. The first data release of the 2016 data, including images, catalogs and lightcurves of 26578 bright stars ($7.5le i le15$) was presented in citet{Zhang18}. The best precision, as measured by the RMS of the lightcurves at the optimum magnitude of the survey ($i=10$), is around 2,mmag. We detect 222 objects with plausible transit signals from these data, 116 of which are plausible transiting exoplanet candidates according to their stellar properties as given by the TESS Input Catalog citep{Stassun17}, Gaia DR2 citep{Gaia18} and TESS-HERMES spectroscopy citep{Sharma18}. With the first data release from TESS expected in late 2018, this candidate list will be a timely for improving the rejection of potential false positives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا