ترغب بنشر مسار تعليمي؟ اضغط هنا

On the superconducting nature of the Bi-II phase of elemental Bismuth

67   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconductivity in the Bi-II phase of elemental Bismuth (transition temperature $T_{rm c}simeq3.92$ K at pressure $psimeq 2.80$ GPa) was studied experimentally by means of the muon-spin rotation as well as theoretically by using the Eliashberg theory in combination with Density Functional Theory calculations. Experiments reveal that Bi-II is a type-I superconductor with a zero temperature value of the thermodynamic critical field $B_{rm c}(0)simeq31.97$~mT. The Eliashberg theory approach provides a good agreement with the experimental $T_{rm c}$ and the temperature evolution of $B_{rm c}$. The estimated value for the retardation (coupling) parameter $k_{rm B}T_{rm c}/omega_{rm ln} approx 0.07$ ($omega_{rm ln}$ is the logarithmically averaged phonon frequency) suggests that Bi-II is an intermediately-coupled superconductor.



قيم البحث

اقرأ أيضاً

Using muon-spin rotation the pressure-induced superconductivity in the Bi-III phase of elemental Bismuth (transition temperature $T_{rm c}simeq7.05$ K) was investigated. The Ginzburg-Landau parameter $kappa=lambda/xi=30(6)$ ($lambda$ is the magnetic penetration depth, $xi$ is the coherence length) was estimated which is the highest among single element superconductors. The temperature dependence of the superconducting energy gap [$Delta(T)$] reconstructed from $lambda^{-2}(T)$ deviates from the weak-coupled BCS prediction. The coupling strength $2Delta/k_{rm B}T_{rm c}simeq 4.34$ was estimated thus implying that Bi-III stays within the strong coupling regime. The Density Functional Theory calculations suggest that superconductivity in Bi-III could be described within the Eliashberg approach with the characteristic phonon frequency $omega_{rm ln}simeq 5.5$ meV. An alternative pairing mechanism to the electron-phonon coupling involves the possibility of Cooper pairing induced by the Fermi surface nesting.
102 - T. Maniv , V. Zhuravlev 2007
Superconducting phase transitions in strongly type-II superconductors in the Pauli paramagnetic limit are considered within the framework of the Gorkov-Ginzburg-Landau approach in the lowest Landau level approximation for both s and d-wave electron p airing. Simple analytical expressions for the quadratic and quartic coefficients in the order parameter expansion of the superconducting free energy are derived without relying on gradient or wavenumber expansions. The existence of a changeover from continuos to discontinuos superconducting phase transitions predicted to occur in the clean limit is shown to depend only on the dimensionality of the underlying electronic band structure. Such a changeover can take place in the quasi 2D regime below a critical value of a 3D-2D crossover parameter.
319 - L. Dudy , A. Krapf , H. Dwelk 2010
We report characterization results by energy dispersive x-ray analysis and AC-susceptibility for a statistically relevant number of single layer Bi-cuprate single crystals. We show that the two structurally quite different modifications of the single -layered Bi-cuprate, namely (La,Pb=0.4)-Bi2201 and La-Bi2201, exhibit anomalies in the superconducting transition temperature at certain hole doping, e.g. at 1/8 holes per Cu. These doping values agree well with the magic doping fractions found in the temperature dependent resistance of LSCO by Komiya et al. This new set of findings suggests that all these anomalies are generic for the hole-doped high-temperature superconductors.
Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu$_{11}$Bi$_7$, were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pr essures with high-densities from ab initio calculations. In particular, a Cu$_2$Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu$_{11}$Bi$_7$ and CuBi, cubic Cu$_2$Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu$_2$Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm$^{3}$ at 0 GPa is achieved. The moderate electron-phonon coupling of $lambda=0.68$ leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu$_{11}$Bi$_7$and CuBi, as well as in elemental Cu and Bi .
Topological superconductivity is one of the frontier research directions in condensed matter physics. One of the unique elementary excitations in topological superconducting state is the Majorana fermion (mode) which is its own antiparticle and obeys the non-Abelian statistics, and thus useful for constructing the fault-tolerant quantum computing. The evidence for Majorana fermions (mode) in condensed matter state is now quickly accumulated. Here we report the easily achievable zero-energy mode on the tunneling spectra on Bi islands deposited on the Fe(Te,Se) superconducting single crystals. We interpret this result as the consequence of proximity effect induced topological superconductivity on the Bi islands with strong spin-orbital coupling effect. The zero-energy mode is argued to be the signature of the Majorana modes in this size confined system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا