ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian symmetries and disorder: a broad non-ergodic regime and anomalous thermalization

84   0   0.0 ( 0 )
 نشر من قبل Dmitry Abanin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetries play a central role in single-particle localization. Recent research focused on many-body localized (MBL) systems, characterized by new kind of integrability, and by the area-law entanglement of eigenstates. We investigate the effect of a non-Abelian $SU(2)$ symmetry on the dynamical properties of a disordered Heisenberg chain. While $SU(2)$ symmetry is inconsistent with the conventional MBL, a new non-ergodic regime is possible. In this regime, the eigenstates exhibit faster than area-law, but still a strongly sub-thermal scaling of entanglement entropy. Using exact diagonalization, we establish that this non-ergodic regime is indeed realized in the strongly disordered Heisenberg chains. We use real-space renormalization group (RSRG) to construct approximate excited eigenstates, and show their accuracy for systems of size up to $L=26$. As disorder strength is decreased, a crossover to the thermalizing phase occurs. To establish the ultimate fate of the non-ergodic regime in the thermodynamic limit, we develop a novel approach for describing many-body processes that are usually neglected by RSRG, accessing systems of size $L>2000$. We characterize the resonances that arise due to such processes, finding that they involve an ever growing number of spins as the system size is increased. The probability of finding resonances grows with the system size. Even at strong disorder, we can identify a large lengthscale beyond which resonances proliferate. Presumably, this eventually would drive the system to a thermalizing phase. However, the extremely long thermalization time scales indicate that a broad non-ergodic regime will be observable experimentally. Our study demonstrates that symmetries control dynamical properties of disordered, many-body systems. The approach introduced here provides a versatile tool for describing a broad range of disordered many-body systems.

قيم البحث

اقرأ أيضاً

We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions u=5/2 or u=12/5. In one spatial dimension, such disordered anyon models have pre viously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.
Linear arrays of trapped and laser cooled atomic ions are a versatile platform for studying emergent phenomena in strongly-interacting many-body systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact thr ough laser mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatiotemporal resolution, decoupling from the external environment, and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin-models which are heralded by memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.
Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex than what can be expressed with a single number. We show that the three distinct dynamical phases known as thermalization, Anderson localization, and many-body localization are marked by different patterns of the spectrum of the reduced density matrix for a state evolved after a quantum quench. While the entanglement spectrum displays Poisson statistics for the case of Anderson localization, it displays universal Wigner-Dyson statistics for both the cases of many-body localization and thermalization, albeit the universal distribution is asymptotically reached within very different time scales in these two cases. We further show that the complexity of entanglement, revealed by the possibility of disentangling the state through a Metropolis-like algorithm, is signaled by whether the entanglement spectrum level spacing is Poisson or Wigner-Dyson distributed.
127 - Yagmur Kati 2021
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Ts ingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
The critical phases, being delocalized but non-ergodic, are fundamental phases which are different from both the many-body localization and ergodic extended quantum phases, and have so far not been realized in experiment. Here we propose to realize s uch critical phases with and without interaction based on a topological optical Raman lattice scheme, which possesses one-dimensional spin-orbit coupling and an incommensurate Zeeman potential. We demonstrate the existence of both the noninteracting and many-body critical phases, which can coexist with the topological phase, and show that the critical-localization transition coincides with the topological phase boundary in noninteracting regime. The dynamical detection of the critical phases is proposed and studied in detail. Finally, we demonstrate how the proposed critical phases can be achieved based on the current cold atom experiments. This work paves the way to observe the novel critical phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا