ﻻ يوجد ملخص باللغة العربية
Direct numerical evaluation of the real-time path integral has a well-known sign problem that makes convergence exponentially slow. One promising remedy is to use Picard-Lefschetz theory to flow the domain of the field variables into the complex plane, where the integral is better behaved. By Cauchys theorem, the final value of the path integral is unchanged. Previous analyses have considered the case of real scalar fields in thermal equilibrium, employing a closed Schwinger-Keldysh time contour, allowing the evaluation of the full quantum correlation functions. Here we extend the analysis by not requiring a closed time path, instead allowing for an initial density matrix for out-of-equilibrium initial value problems. We are able to explicitly implement Gaussian initial conditions, and by separating the initial time and the later times into a two-step Monte-Carlo sampling, we are able to avoid the phenomenon of multiple thimbles. In fact, there exists one and only one thimble for each sample member of the initial density matrix. We demonstrate the approach through explicitly computing the real-time propagator for an interacting scalar in 0+1 dimensions, and find very good convergence allowing for comparison with perturbation theory and the classical-statistical approximation to real-time dynamics.
We follow up the work, where in light of the Picard-Lefschetz thimble approach, we split up the real-time path integral into two parts: the initial density matrix part which can be represented via an ensemble of initial conditions, and the dynamic pa
The Wilson action for Euclidean lattice gauge theory defines a positive-definite transfer matrix that corresponds to a unitary lattice gauge theory time-evolution operator if analytically continued to real time. Hoshina, Fujii, and Kikukawa (HFK) rec
Real-time evolution of replicas of classical field is proposed as an approximate simulator of real-time quantum field dynamics at finite temperatures. We consider $N$ classical field configurations dubbed as replicas which interact with each other vi
We present concluding results from our study for zero-temperature phase structure of the massive Thirring model in 1+1 dimensions with staggered regularisation. Employing the method of matrix product states, several quantities, including two types of
The path optimization method is applied to a QCD effective model with the Polyakov loop and the repulsive vector-type interaction at finite temperature and density to circumvent the model sign problem. We show how the path optimization method can inc