ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case

44   0   0.0 ( 0 )
 نشر من قبل Omar Gustavo Miranda
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Several experimental proposals expect to confirm the recent measurement of the coherent elastic neutrino-nucleus scattering (CEvNS). Motivated in particular by the next generation experiments of the COHERENT collaboration, we study their sensitivity to different tests of the Standard Model and beyond. We analyze the resolution that can be achieved by each future proposed detector in the measurement of the weak mixing angle; we also perform similar analysis in the context of Non-Standard Interaction (NSI) and in the case of an oscillation into a sterile neutrino state. We show that the future perspectives are interesting for these types of new physics searches.

قيم البحث

اقرأ أيضاً

98 - Kate Scholberg 2018
The COHERENT collaboration measured coherent elastic neutrino-nucleus scattering (CEvNS) for the first time at the Spallation Neutron Source at Oak Ridge National Laboratory, using a CsI[Na] detector. Here we discuss the nature of the CEvNS process, physics motivations, and experimental considerations for measuring CEvNS. We describe the CsI[Na] measurement, along with status and future of COHERENT.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino sources, and use gaseous helium and fluorine as examples of detector material. We generate Standard Model predictions, and compare to scenarios that include new, light vector or scalar mediators. We show that directional detectors can provide valuable additional information in discerning new physics, and we identify prominent spectral features in both the angular and the recoil energy spectrum for light mediators, even for nuclear recoil energy thresholds as high as $sim 50$ keV. Combined with energy and timing information, directional information can play an important role in extracting new physics from CE$ u$NS experiments.
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a n object called the weak form factor of the nucleus. Here, we provide results for this form factor calculated using the large-scale nuclear shell model for a wide range of nuclei of relevance for current CE$ u$NS experiments, including cesium, iodine, argon, fluorine, sodium, germanium, and xenon. In addition, we provide the responses needed to capture the axial-vector part of the cross section, which does not scale coherently with the number of neutrons, but may become relevant for the SM prediction of CE$ u$NS on target nuclei with nonzero spin. We then generalize the formalism allowing for contributions beyond the SM. In particular, we stress that in this case, even for vector and axial-vector operators, the standard weak form factor does not apply anymore, but needs to be replaced by the appropriate combination of the underlying nuclear structure factors. We provide the corresponding expressions for vector, axial-vector, but also (pseudo-)scalar, tensor, and dipole effective operators, including two-body-current effects as predicted from chiral effective field theory. Finally, we update the spin-dependent structure factors for dark matter scattering off nuclei according to our improved treatment of the axial-vector responses.
We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CE$ u$NS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensiti vities on each component of the Majorana neutrino transition magnetic moment (TMM), $left vert Lambda_i right vert$, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CE$ u$NS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CE$ u$NS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data.
623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا