ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

85   0   0.0 ( 0 )
 نشر من قبل Mahmoud Aldababsa
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Todays wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.

قيم البحث

اقرأ أيضاً

We propose a learning-based scheme to investigate the dynamic multi-channel access (DMCA) problem in the fifth generation (5G) and beyond networks with fast time-varying channels wherein the channel parameters are unknown. The proposed learning-based scheme can maintain near-optimal performance for a long time, even in the sharp changing channels. This scheme greatly reduces processing delay, and effectively alleviates the error due to decision lag, which is cased by the non-immediacy of the information acquisition and processing. We first propose a psychology-based personalized quality of service model after introducing the network model with unknown channel parameters and the streaming model. Then, two access criteria are presented for the living streaming model and the buffered streaming model. Their corresponding optimization problems are also formulated. The optimization problems are solved by learning-based DMCA scheme, which combines the recurrent neural network with deep reinforcement learning. In the learning-based DMCA scheme, the agent mainly invokes the proposed prediction-based deep deterministic policy gradient algorithm as the learning algorithm. As a novel technical paradigm, our scheme has strong universality, since it can be easily extended to solve other problems in wireless communications. The real channel data-based simulation results validate that the performance of the learning-based scheme approaches that derived from the exhaustive search when making a decision at each time-slot, and is superior to the exhaustive search method when making a decision at every few time-slots.
We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi- tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate.
In this paper, the problem of opportunistic spectrum sharing for the next generation of wireless systems empowered by the cloud radio access network (C-RAN) is studied. More precisely, low-priority users employ cooperative spectrum sensing to detect a vacant portion of the spectrum that is not currently used by high-priority users. The design of the scheme is to maximize the overall throughput of the low-priority users while guaranteeing the quality of service of the high-priority users. This objective is attained by optimally adjusting spectrum sensing time with respect to imposed target probabilities of detection and false alarm as well as dynamically allocating and assigning C-RAN resources, i.e., transmit powers, sub-carriers, remote radio heads (RRHs), and base-band units. The presented optimization problem is non-convex and NP-hard that is extremely hard to tackle directly. To solve the problem, a low-complex iterative approach is proposed in which sensing time, user association parameters and transmit powers of RRHs are alternatively assigned and optimized at every step. Numerical results are then provided to demonstrate the necessity of performing sensing time adjustment in such systems as well as balancing the sensing-throughput tradeoff.
This article proposes a novel framework for unmaned aerial vehicle (UAV) networks with massive access capability supported by non-orthogonal multiple access (NOMA). In order to better understand NOMA enabled UAV networks, three case studies are carri ed out. We first provide performance evaluation of NOMA enabled UAV networks by adopting stochastic geometry to model the positions of UAVs and ground users. Then we investigate the joint trajectory design and power allocation for static NOMA users based on a simplified two-dimensional (2D) model that UAV is flying around at fixed height. As a further advance, we demonstrate the UAV placement issue with the aid of machine learning techniques when the ground users are roaming and the UAVs are capable of adjusting their positions in three-dimensions (3D) accordingly. With these case studies, we can comprehensively understand the UAV systems from fundamental theory to practical implementation.
Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral ef ficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا