ﻻ يوجد ملخص باللغة العربية
We give new criteria for ballistic behavior of random walks in random environment which are perturbations of the simple symmetric random walk on $mathbb Z^d$ in dimensions $dge 4$. Our results extend those of Sznitman [Ann. Probab. 31, no. 1, 285-322 (2003)] and the recent ones of Ramirez and Saglietti [Preprint, arXiv:1808.01523], and allow us to exhibit new examples in dimensions $dge 4$ of ballistic random walks which do not satisfy Kalikows condition. Our criteria implies ballisticity whenever the average of the local drift of the walk is not too small compared with an appropriate moment of the centered environment. The proof relies on a concentration inequality of Boucheron et al. [Ann. Probab. 33, no. 2, 514-560 (2005)].
We consider transient one-dimensional random walks in random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of valleys of height $log t$. In t
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported b
We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the p