ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength survey of X-ray sources in the Sculptor Dwarf Spheroidal Galaxy

72   0   0.0 ( 0 )
 نشر من قبل Pauline Barmby
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an unprecedented, deep study of the primordial low-mass X-ray binary population in an isolated, lower-metallicity environment. We perform followup observations of previously-identified X-ray binary candidates in the Sculptor Dwarf Galaxy by combining a second Chandra observation with Spitzer and Gemini photometry, as well as Gemini spectroscopy of selected targets. Of the original nine bright X-ray sources identified, we are able to classify all but one as quasars, active galactic nuclei, or background galaxies. We further discover four new X-ray sources in the second-epoch Chandra observation. Three of these new sources are background sources and one is a foreground flaring star. We have found that Sculptor is effectively devoid of X-ray sources above a few 1e34 erg/s. If Sculptor is able to retain primordial binaries at a similar rate to globular clusters, this implies that bright X-ray binaries observed in globular clusters in the present epoch are all formed dynamically.



قيم البحث

اقرأ أيضاً

We present the spectral analysis of an 87~ks emph{XMM-Newton} observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we repor t X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with AGN, few of them possess characteristics of LMXBs and CVs. Our analysis puts constraints on population of X-ray sources with $L_X>3times10^{33}$~erg~s$^{-1}$ in Draco suggesting that there are no actively accreting BH and NS binaries. However, we find 4 sources that could be LMXBs/CVs in quiescent state associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5~keV.
We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed an alysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggestive of a fair proportion of s-process; we discuss the implication for the nucleosynthetic origin of the neutron capture elements.
179 - Joshua D. Simon 2014
We present a homogeneous chemical abundance analysis of five of the most metal-poor stars in the Sculptor dwarf spheroidal galaxy. We analyze new and archival high resolution spectroscopy from Magellan/MIKE and VLT/UVES and determine stellar paramete rs and abundances in a consistent way for each star. Two of the stars in our sample, at [Fe/H] = -3.5 and [Fe/H] = -3.8, are new discoveries from our Ca K survey of Sculptor, while the other three were known in the literature. We confirm that Scl 07-50 is the lowest metallicity star identified in an external galaxy, at [Fe/H] = -4.1. The two most metal-poor stars both have very unusual abundance patterns, with striking deficiencies of the alpha elements, while the other three stars resemble typical extremely metal-poor Milky Way halo stars. We show that the star-to-star scatter for several elements in Sculptor is larger than that for halo stars in the same metallicity range. This scatter and the uncommon abundance patterns of the lowest metallicity stars indicate that the oldest surviving Sculptor stars were enriched by a small number of earlier supernovae, perhaps weighted toward high-mass progenitors from the first generation of stars the galaxy formed.
We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the Dwarf Abundances and Radial Velocities Team (DART) using the latest calibration. Of the seven extremely metal-poor candidates, five stars are confirmed to be extremely metal-poor (i.e., [Fe/H]<-3 dex), with [Fe/H]=-3.47 +/- 0.07 for our most metal-poor star. All are around or below [Fe/H]=-2.5 dex from the measurement of individual Fe lines. These values are in agreement with the CaT predictions to within error bars. None of the seven stars is found to be carbon-rich. We estimate a 2-13% possibility of this being a pure chance effect, which could indicate a lower fraction of carbon-rich extremely metal-poor stars in Sculptor compared to the Milky Way halo. The [alpha/Fe] ratios show a range from +0.5 to -0.5, a larger variation than seen in Galactic samples although typically consistent within 1-2sigma. One star seems mildly iron-enhanced. Our program stars show no deviations from the Galactic abundance trends in chromium and the heavy elements barium and strontium. Sodium abundances are, however, below the Galactic values for several stars. Overall, we conclude that the CaT lines are a successful metallicity indicator down to the extremely metal-poor regime and that the extremely metal-poor stars in the Sculptor dwarf galaxy are chemically more similar to their Milky Way halo equivalents than the more metal-rich population of stars.
We present the results of the analysis of three XMM-Newton observations of the Willman 1 dwarf spheroidal galaxy (Wil 1). X-ray sources are classified on the basis of spectral analysis, hardness ratios, X-ray-to-optical flux ratio, X-ray variability, plus cross-correlation with available catalogues in optical and infrared wavelengths. We catalogued 97 sources in the field of Wil 1. Our classification shows the presence of a $beta$-type symbiotic star in Wil 1. We classified one M dwarf foreground star in the field of Wil 1. Moreover, fifty-four sources are classified as background AGNs and galaxies. Our study shows that the luminosity of the X-ray sources of Wil 1 does not exceed $sim$10$^{34}$ erg s$^{-1}$ in the energy range of 0.2--12.0 keV, which is similar to observed luminosities of sources in nearby dwarf spheroidal galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا