ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter from Backreaction? Collapse models on galaxy cluster scales

85   0   0.0 ( 0 )
 نشر من قبل Thomas Buchert
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In inhomogeneous cosmology, restricting attention to an irrotational dust matter model, backreaction arises in terms of the deviation of the averaged spatial scalar curvature from a constant-curvature model on some averaging domain $D$, $W_D$, and the kinematical backreaction $Q_D$. These backreaction variables can be modeled as an effective scalar field, called the `morphon field. The general cosmological equations still need a closure condition to be solved. A simple example is the class of scaling solutions where $W_D$ and $Q_D$ are assumed to follow a power law of the volume scale factor $a_D$. But while they can describe models of quintessence, these and other models still assume the existence of dark matter in addition to the known sources. Going beyond scaling solutions by using a model for structure formation that we argue is reasonably generic, we investigate the correspondence between the morphon field and fundamental scalar field dark matter models, in order to describe dark matter as an effective phenomenon arising from kinematical backreaction and the averaged spatial curvature of the inhomogeneous Universe. While we find significant differences with those fundamental models, our main result is that the energy budget on typical collapsing domains is provided by curvature and matter in equal parts already around the turn-around time, leading to curvature dominance thereafter and increasing to a curvature contribution of $3/4$ of the energy budget at the onset of virialization. Kinematical backreaction is subdominant at early stages, but its importance rises quickly after turn-around and dominates the curvature contribution in the final phase of the collapse. We conclude that backreaction can indeed mimic dark matter (in the energy budget) during the collapse phase of megaparsec-scale structures.



قيم البحث

اقرأ أيضاً

We study how inhomogeneities of the cosmological fluid fields backreact on the homogeneous part of energy density and how they modify the Friedmann equations. In general, backreaction requires to go beyond the pressureless ideal fluid approximation, and this can lead to a reduced growth of cosmological large scale structure. Since observational evidence favours evolution close to the standard growing mode in the linear regime, we focus on two-component fluids in which the non-ideal fluid is gravitationally coupled to cold dark matter and in which a standard growing mode persists. This is realized, e.g. for a baryonic fluid coupled to cold dark matter. We calculate the backreaction for this case and for a wide range of other two-fluid models. Here the effect is either suppressed because the non-ideal matter properties are numerically too small, or because they lead to a too stringent UV cut-off of the integral over the power spectrum that determines backreaction. We discuss then matter field backreaction from a broader perspective and generalize the formalism such that also far-from-equilibrium scenarios relevant to late cosmological times and non-linear scales can be addressed in the future.
We revisit certain features of an assumed spherically symmetric perfect fluid dark matter halo in the light of the observed data of our galaxy
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effe ctively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its experimental signature is a moderate redshift dependent cold dark matter deficiency function.
159 - S. Basak , A. Ganguly , K. Haris 2021
If a significant fraction of dark matter is in the form of compact objects, they will cause microlensing effects in the gravitational wave (GW) signals observable by LIGO and Virgo. From the non-observation of microlensing signatures in the binary bl ack hole events from the first two observing runs and the first half of the third observing run, we constrain the fraction of compact dark matter in the mass range $10^2-10^5~{M_odot}$ to be less than $simeq 50-80%$ (details depend on the assumed source population properties and the Bayesian priors). These modest constraints will be significantly improved in the next few years with the expected detection of thousands of binary black hole events, providing a new avenue to probe the nature of dark matter.
In light of the cosmological observations, we investigate dark energy models from the Horndeski theory of gravity. In particular, we consider cosmological models with the derivative self-interaction of the scalar field and the derivative coupling bet ween the scalar field and gravity. We choose the self-interaction term to have an exponential function of the scalar field with both positive and negative exponents. For the function that has a positive exponent, our result shows that the derivative self-interaction term plays an important role in the late-time universe. On the other hand, to reproduce the right cosmic history, the derivative coupling between the scalar field and gravity must dominate during the radiation-dominated phase. However, the importance of such a coupling in the present universe found to be negligible due to its drastic decrease over time. Moreover, the propagation speed of gravitational waves estimated for our model is within the observational bounds, and our model satisfies the observational constraints on the dark energy equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا