ﻻ يوجد ملخص باللغة العربية
Thermoregulation in honey bee colonies during winter is thought to be self-organised. We added mortality of individual honey bees to an existing model of thermoregulation to account for elevated losses of bees that are reported worldwide. The aim of analysis is to obtain a better fundamental understanding of the consequences of individual mortality during winter. This model resembles the well-known Keller-Segel model. In contrast to the often studied Keller-Segel models, our model includes a chemotactic coefficient of which the sign can change as honey bees have a preferred temperature: when the local temperature is too low, they move towards higher temperatures, whereas the opposite is true for too high temperatures. Our study shows that we can distinguish two states of the colony: one in which the colony size is above a certain critical number of bees in which the bees can keep the core temperature of the colony above the threshold temperature, and one in which the core temperature drops below the critical threshold and the mortality of the bees increases dramatically, leading to a sudden death of the colony. This model behaviour may explain the globally observed honey bee colony losses during winter.
Many areas of agriculture rely on honey bees to provide pollination services and any decline in honey bee numbers can impact on global food security. In order to understand the dynamics of honey bee colonies we present a discrete time marked renewal
In this paper, we consider a Keller-Segel type fluid model, which is a kind of Euler-Poisson system with a self-gravitational force. We show that similar to the parabolic case, there is a critical mass $8pi$ such that if the initial total mass $M$ is
Observed bimodal tree cover distributions at particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna. However, when including sp
The paradox of the plankton highlights the apparent contradiction between Gauses law of competitive exclusion and the observed diversity of phytoplankton. It is well known that phytoplankton dynamics depend heavily on two main resources: light and nu
We study a version of the Keller-Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave s