ترغب بنشر مسار تعليمي؟ اضغط هنا

A census of $rho$ Oph candidate members from Gaia DR2

118   0   0.0 ( 0 )
 نشر من قبل H\\'ector C\\'anovas HC
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ophiuchus cloud complex is one of the best laboratories to study the earlier stages of the stellar and protoplanetary disc evolution. The wealth of accurate astrometric measurements contained in the Gaia Data Release 2 can be used to update the census of Ophiuchus member candidates. We seek to find potential new members of Ophiuchus and identify those surrounded by a circumstellar disc. We constructed a control sample composed of 188 bona fide Ophiuchus members. Using this sample as a reference we applied three different density-based machine learning clustering algorithms (DBSCAN, OPTICS, and HDBSCAN) to a sample drawn from the Gaia catalogue centred on the Ophiuchus cloud. The clustering analysis was applied in the five astrometric dimensions defined by the three-dimensional Cartesian space and the proper motions in right ascension and declination. The three clustering algorithms systematically identify a similar set of candidate members in a main cluster with astrometric properties consistent with those of the control sample. The increased flexibility of the OPTICS and HDBSCAN algorithms enable these methods to identify a secondary cluster. We constructed a common sample containing 391 member candidates including 166 new objects, which have not yet been discussed in the literature. By combining the Gaia data with 2MASS and WISE photometry, we built the spectral energy distributions from 0.5 to $22microm$ for a subset of 48 objects and found a total of 41 discs, including 11 Class II and 1 Class III new discs. Density-based clustering algorithms are a promising tool to identify candidate members of star forming regions in large astrometric databases. If confirmed, the candidate members discussed in this work would represent an increment of roughly 40% of the current census of Ophiuchus.



قيم البحث

اقرأ أيضاً

394 - Zhoujian Zhang 2021
We present a search for new planetary-mass members of nearby young moving groups (YMGs) using astrometry for 694 T and Y dwarfs, including 447 objects with parallaxes, mostly produced by recent large parallax programs from UKIRT and Spitzer. Using th e BANYAN $Sigma$ and LACEwING algorithms, we identify 30 new candidate YMG members, with spectral types of T0$-$T9 and distances of $10-43$ pc. Some candidates have unusually red colors and/or faint absolute magnitudes compared to field dwarfs with similar spectral types, providing supporting evidence for their youth, including 4 early-T dwarfs. We establish one of these, the variable T1.5 dwarf 2MASS J21392676$+$0220226, as a new planetary-mass member ($14.6^{+3.2}_{-1.6}$ M$_{rm Jup}$) of the Carina-Near group ($200pm50$ Myr) based on its full six-dimensional kinematics, including a new parallax measurement from CFHT. The high-amplitude variability of this object is suggestive of a young age, given the coexistence of variability and youth seen in previously known YMG T dwarfs. Our four latest-type (T8$-$T9) YMG candidates, WISE J031624.35$+$430709.1, ULAS J130217.21$+$130851.2, WISEPC J225540.74$-$311841.8, and WISE J233226.49$-$432510.6, if confirmed, will be the first free-floating planets ($approx2-6$ M$_{rm Jup}$) whose ages and luminosities are compatible with both hot-start and cold-start evolutionary models, and thus overlap the properties of the directly-imaged planet 51 Eri b. Several of our early/mid-T candidates have peculiar near-infrared spectra, indicative of heterogenous photospheres or unresolved binarity. Radial velocity measurements needed for final membership assessment for most of our candidates await upcoming 20$-$30 meter class telescopes. In addition, we compile all 15 known T7$-$Y1 benchmarks and derive a homogeneous set of their effective temperatures, surface gravities, radii, and masses.
We present an extensive search in the literature and Gaia DR2 for visual co-moving binary companions to stars hosting exoplanets and brown dwarfs within 200 pc. We found 218 planet hosts out of 938 to be part of multiple-star systems, with 10 newly d iscovered binaries and 2 new tertiary stellar components. This represents an overall raw multiplicity rate of 23.2$pm$1.6% for hosts to exoplanets across all spectral types, with multi-planet systems found to have a lower duplicity frequency at the 2.2$sigma$ level. We found that more massive hosts are more often in binary configurations, and that planet-bearing stars in multiple systems are predominantly the most massive component of stellar binaries. Investigations of multiplicity as a function of planet mass and separation revealed that giant planets with masses >0.1 MJup are more frequently seen in stellar binaries than small sub-Jovian planets with a 3.6$sigma$ difference, a trend enhanced for the most massive (>7 MJup) short-period (<0.5 AU) planets and brown dwarf companions. Binarity was found to have no significant effect on the demographics of low-mass planets (<0.1 MJup) or warm and cool gas giants (>0.5 AU). While stellar companion mass appears to have no impact on planet properties, binary separation seems to be an important factor in the resulting structure of planetary systems. Stellar companions on separations <1000 AU can play a role in the formation or evolution of massive close-in planets, while planets in wider binaries show similar properties to planets orbiting single stars. Finally, numerous stellar companions on separations <1-3 arcsec likely remain undiscovered to this date. Continuous efforts to complete our knowledge of stellar multiplicity on separations of tens to hundreds of AU are essential to confirm the reported trends and further our understanding of the roles played by multiplicity on exoplanets.
Gaias Early Third Data Release (EDR3) does not contain new radial velocities because these will be published in Gaias full third data release (DR3), expected in the first half of 2022. To maximise the usefulness of EDR3, Gaias second data release (DR 2) sources (with radial velocities) are matched to EDR3 sources to allow their DR2 radial velocities to also be included in EDR3. This presents two considerations: (i) arXiv:1901.10460 (hereafter B19) published a list of 70,365 sources with potentially contaminated DR2 radial velocities; and (ii) EDR3 is based on a new astrometric solution and a new source list, which means sources in DR2 may not be in EDR3. EDR3 contains 7,209,831 sources with a DR2 radial velocity, which is 99.8% of sources with a radial velocity in DR2. 14,800 radial velocities from DR2 are not propagated to any EDR3 sources because (i) 3871 from the B19 list are found to either not have an unpublished, preliminary DR3 radial velocity or it differs significantly from its DR2 value, and 5 high-velocity stars not in the B19 list are confirmed to have contaminated radial velocities; and (ii) 10,924 DR2 sources could not be satisfactorily matched to any EDR3 sources, so their DR2 radial velocities are also missing from EDR3. The reliability of radial velocities in EDR3 has improved compared to DR2 because the update removes a small fraction of erroneous radial velocities (0.05% of DR2 radial velocities and 5.5% of the B19 list). Lessons learnt from EDR3 (e.g. bright star contamination) will improve the radial velocities in future Gaia data releases. The main reason for radial velocities from DR2 not propagating to EDR3 is not related to DR2 radial velocity quality. It is because the DR2 astrometry is based on one component of close binary pairs, while EDR3 astrometry is based on the other component, which prevents these sources from being unambiguously matched. (Abridged)
Context: Lupus is recognised as one of the closest star-forming regions, but the lack of trigonometric parallaxes in the pre-Gaia era hampered many studies on the kinematic properties of this region and led to incomplete censuses of its stellar popul ation. Aims: We use the second data release of the Gaia space mission combined with published ancillary radial velocity data to revise the census of stars and investigate the 6D structure of the Lupus complex. Methods: We performed a new membership analysis of the Lupus association based on astrometric and photometric data over a field of 160 deg2 around the main molecular clouds of the complex and compared the properties of the various subgroups in this region. Results: We identified 137 high-probability members of the Lupus association of young stars, including 47 stars that had never been reported as members before. Many of the historically known stars associated with the Lupus region identified in previous studies are more likely to be field stars or members of the adjacent Scorpius-Centaurus association. Our new sample of members covers the magnitude and mass range from G=8 to G=18 mag and from 0.03 to 2.4Msun, respectively. We compared the kinematic properties of the stars projected towards the molecular clouds Lupus 1 to 6 and showed that these subgroups are located at roughly the same distance (about 160~pc) and move with the same spatial velocity. Our age estimates inferred from stellar models show that the Lupus subgroups are coeval (with median ages ranging from about 1 to 3 Myr). The Lupus association appears to be younger than the population of young stars in the Corona-Australis star-forming region recently investigated by our team using a similar methodology. The initial mass function of the Lupus association inferred from the distribution of spectral types shows little variation compared to other star-forming regions.
Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space miss ion to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photometric data set over a field of 128 deg$^{2}$ around the dark clouds of the region. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before. Our sample of members covers the magnitude range between $Ggtrsim5$ mag and $Glesssim20$ mag, and it reveals the existence of two kinematically and spatially distinct subgroups. There is a distributed `off-cloud population of stars located in the north of the dark clouds that is twice as numerous as the historically known `on-cloud population that is concentrated around the densest cores. By comparing the location of the stars in the HR-diagram with evolutionary models, we show that these two populations are younger than 10 Myr. Based on their infrared excess emission, we identify 28 Class II and 215 Class III stars among the sources with available infrared photometry, and we conclude that the frequency of Class II stars (i.e. `disc-bearing stars) in the on-cloud region is twice as large as compared to the off-cloud population. The distance derived for the Corona-Australis region based on this updated census is $d=149.4^{+0.4}_{-0.4}$ pc, which exceeds previous estimates by about 20 pc.In this paper we provide the most complete census of stars in Corona-Australis available to date that can be confirmed with Gaia data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا