ﻻ يوجد ملخص باللغة العربية
We investigate the effective rheology of two-phase flow in a bundle of parallel capillary tubes carrying two immiscible fluids under an external pressure drop. The diameter of each tube varies along its length and the corresponding capillary threshold pressures are considered to be distributed randomly according to a uniform probability distribution. We demonstrate through analytical calculations that a transition from a linear Darcy regime to a non-linear behavior occurs while decreasing the pressure drop $Delta P$, where the total flow rate $langle Q rangle$ varies with $Delta P$ with an exponent $2$. This exponent for the non-linear regime changes when a lower cut-off $P_m$ is introduced in the threshold distribution. We demonstrate analytically that, in the limit where $Delta P$ approaches $P_m$, the flow rate scales as $langle Q rangle sim (|Delta P|-P_m)^{3/2}$. We have also provided some numerical results in support to our analytical findings.
A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom-heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based m
Experimental and numerical investigations are performed to provide an assessment of the transport behavior of an ultrasonic oscillatory two-phase flow in a microchannel. The work is inspired by the flow observed in an innovative ultrasonic fabric dry
We present a theoretical framework for immiscible incompressible two-phase flow in homogeneous porous media that connects the distribution of local fluid velocities to the average seepage velocities. By dividing the pore area along a cross-section tr
Harnessing fluidic instabilities to produce structures with robust and regular properties has recently emerged as a new fabrication paradigm. This is exemplified in the work of Gumennik et al. [Nat. Comm. 4:2216, DOI: 10.1038/ncomms3216, (2013)], in
In this investigation we revisit the concept of effective free surfaces arising in the solution of the time-averaged fluid dynamics equations in the presence of free boundaries. This work is motivated by applications of the optimization and optimal c