ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Probability Density of the Nuclei in a Vibrationally Excited Molecule

341   0   0.0 ( 0 )
 نشر من قبل Axel Schild
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Axel Schild




اسأل ChatGPT حول البحث

For localized and oriented vibrationally excited molecules, the one-body probability density of the nuclei (one-nucleus density) is studied. Like the familiar and widely used one-electron density that represents the probability of finding an electron at a given location in space, the one-nucleus density represents the probability of finding a nucleus at a given position in space independent of the location of the other nuclei. In contrast to the full many-dimensional nuclear probability density, the one-nucleus density contains less information and may thus be better accessible by experiment, especially for large molecules. It also provides a quantum-mechanical view of molecular vibrations that can easily be visualized. We study how the nodal structure of the wavefunctions of vibrationally excited states translates to the one-nucleus density. It is found that nodes are not necessarily visible: Already for relatively small molecules, only certain vibrational excitations change the one-nucleus density qualitatively compared to the ground state. It turns out that there are some simple rules for predicting the shape of the one-nucleus density from the normal mode coordinates, and thus for predicting if a vibrational excitation is visible in a corresponding experiment.

قيم البحث

اقرأ أيضاً

Neutral molecules, isolated in the gas-phase, can be prepared in a long-lived excited state and stored in a trap. The long observation time afforded by the trap can then be exploited to measure the radiative lifetime of this state by monitoring the t emporal decay of the population in the trap. This method is demonstrated here and used to benchmark the Einstein $A$-coefficients in the Meinel system of OH. A pulsed beam of vibrationally excited OH radicals is Stark decelerated and loaded into an electrostatic quadrupole trap. The radiative lifetime of the upper $Lambda$-doublet component of the $X ^2Pi_{3/2}, v=1, J=3/2$ level is determined as $59.0 pm 2.0$ ms, in good agreement with the calculated value of $57.7 pm 1.0$ ms.
Quantum reactive scattering calculations on the vibrational quenching of HD due to collisions with H were carried out employing an accurate potential energy surface. The state-to-state cross sections for the chemical reaction HD ($v=1, j=0$) + H $ri ghtarrow$ D + H$_2$ ($v=0, j$) at collision energies between 1 and 10,000 cm$^{-1}$ are presented, and a Feshbach resonance in the low-energy regime, below the reaction barrier, is observed for the first time. The resonance is attributed to coupling with the vibrationally adiabatic potential correlating to the $v=1, j=1$ level of the HD molecule, and it is dominated by the contribution from a single partial wave. The properties of the resonance, such as its dynamic behavior, phase behavior, and lifetime, are discussed.
A high-dimensional potential energy surface (PES) for CO interaction with the Au(111) surface is developed using a machine-learning algorithm. Including both molecular and surface coordinates, this PES enables the simulation of the recent experiment on scattering of vibrationally excited CO from Au(111). Trapping in a physisorption well is observed to increase with decreasing incidence energy. While energy dissipation of physisorbed CO is slow, due to weak coupling with both the phonons and electron-hole pairs, its access to the chemisorption well facilitates fast vibrational relaxation of CO through nonadiabatic coupling with surface electron-hole pairs.
231 - K. Kokko , A. Nagy , J. Huhtala 2020
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o f the total density, used in the traditional DFT. The effective potential together the external potential, nuclear Coulomb potential, can be substituted in the Schrodinger like differential equation to obtain the spherically averaged electron density of the system. In the new method instead of one three-dimensional low symmetry equation one has to solve as many spherically symmetric equations as there are atoms in the system.
Motivated by the huge need of data for non-equilibrium plasma modeling, a theoretical investigation of dissociative electron attachment to the NO molecule is performed. The calculations presented here are based on the Local-Complex-Potential approach , taking into account five NO$^-$ resonances. Three specific channels of the process are studied, including the production of excited nitrogen atoms $mathrm{N}(^2mathrm{D})$ and of its anions N$^-$. Interpretation of the existing experimental data and their comparison with our theoretical result are given. A full set of ro-vibrationally-resolved cross sections and the corresponding rate coefficients are reported. In particular, a relatively notably large cross section of N$^-$ ion formation at low energy of the incident electron and for vibrationally excited NO target is predicted. Finally, molecular rotation effects are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا