ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Transferable Self-attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision

358   0   0.0 ( 0 )
 نشر من قبل Haichao Shi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Action recognition in videos has attracted a lot of attention in the past decade. In order to learn robust models, previous methods usually assume videos are trimmed as short sequences and require ground-truth annotations of each video frame/sequence, which is quite costly and time-consuming. In this paper, given only video-level annotations, we propose a novel weakly supervised framework to simultaneously locate action frames as well as recognize actions in untrimmed videos. Our proposed framework consists of two major components. First, for action frame localization, we take advantage of the self-attention mechanism to weight each frame, such that the influence of background frames can be effectively eliminated. Second, considering that there are trimmed videos publicly available and also they contain useful information to leverage, we present an additional module to transfer the knowledge from trimmed videos for improving the classification performance in untrimmed ones. Extensive experiments are conducted on two benchmark datasets (i.e., THUMOS14 and ActivityNet1.3), and experimental results clearly corroborate the efficacy of our method.



قيم البحث

اقرأ أيضاً

363 - Dezhao Luo , Bo Fang , Yu Zhou 2020
Existing video self-supervised learning methods mainly rely on trimmed videos for model training. However, trimmed datasets are manually annotated from untrimmed videos. In this sense, these methods are not really self-supervised. In this paper, we p ropose a novel self-supervised method, referred to as Exploring Relations in Untrimmed Videos (ERUV), which can be straightforwardly applied to untrimmed videos (real unlabeled) to learn spatio-temporal features. ERUV first generates single-shot videos by shot change detection. Then a designed sampling strategy is used to model relations for video clips. The strategy is saved as our self-supervision signals. Finally, the network learns representations by predicting the category of relations between the video clips. ERUV is able to compare the differences and similarities of videos, which is also an essential procedure for action and video related tasks. We validate our learned models with action recognition and video retrieval tasks with three kinds of 3D CNNs. Experimental results show that ERUV is able to learn richer representations and it outperforms state-of-the-art self-supervised methods with significant margins.
Deep learning has achieved great success in recognizing video actions, but the collection and annotation of training data are still quite laborious, which mainly lies in two aspects: (1) the amount of required annotated data is large; (2) temporally annotating the location of each action is time-consuming. Works such as few-shot learning or untrimmed video recognition have been proposed to handle either one aspect or the other. However, very few existing works can handle both issues simultaneously. In this paper, we target a new problem, Annotation-Efficient Video Recognition, to reduce the requirement of annotations for both large amount of samples and the action location. Such problem is challenging due to two aspects: (1) the untrimmed videos only have weak supervision; (2) video segments not relevant to current actions of interests (background, BG) could contain actions of interests (foreground, FG) in novel classes, which is a widely existing phenomenon but has rarely been studied in few-shot untrimmed video recognition. To achieve this goal, by analyzing the property of BG, we categorize BG into informative BG (IBG) and non-informative BG (NBG), and we propose (1) an open-set detection based method to find the NBG and FG, (2) a contrastive learning method to learn IBG and distinguish NBG in a self-supervised way, and (3) a self-weighting mechanism for the better distinguishing of IBG and FG. Extensive experiments on ActivityNet v1.2 and ActivityNet v1.3 verify the rationale and effectiveness of the proposed methods.
We propose StartNet to address Online Detection of Action Start (ODAS) where action starts and their associated categories are detected in untrimmed, streaming videos. Previous methods aim to localize action starts by learning feature representations that can directly separate the start point from its preceding background. It is challenging due to the subtle appearance difference near the action starts and the lack of training data. Instead, StartNet decomposes ODAS into two stages: action classification (using ClsNet) and start point localization (using LocNet). ClsNet focuses on per-frame labeling and predicts action score distributions online. Based on the predicted action scores of the past and current frames, LocNet conducts class-agnostic start detection by optimizing long-term localization rewards using policy gradient methods. The proposed framework is validated on two large-scale datasets, THUMOS14 and ActivityNet. The experimental results show that StartNet significantly outperforms the state-of-the-art by 15%-30% p-mAP under the offset tolerance of 1-10 seconds on THUMOS14, and achieves comparable performance on ActivityNet with 10 times smaller time offset.
114 - Mingfei Gao , Yingbo Zhou , Ran Xu 2020
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundaries for training, which hinders the scalability of online action detection systems. We propose WOAD, a weakly supervised framework that can be trained using only video-class labels. WOAD contains two jointly-trained modules, i.e., temporal proposal generator (TPG) and online action recognizer (OAR). Supervised by video-class labels, TPG works offline and targets at accurately mining pseudo frame-level labels for OAR. With the supervisory signals from TPG, OAR learns to conduct action detection in an online fashion. Experimental results on THUMOS14, ActivityNet1.2 and ActivityNet1.3 show that our weakly-supervised method largely outperforms weakly-supervised baselines and achieves comparable performance to the previous strongly-supervised methods. Beyond that, WOAD is flexible to leverage strong supervision when it is available. When strongly supervised, our method obtains the state-of-the-art results in the tasks of both online per-frame action recognition and online detection of action start.
We aim to tackle a novel task in action detection - Online Detection of Action Start (ODAS) in untrimmed, streaming videos. The goal of ODAS is to detect the start of an action instance, with high categorization accuracy and low detection latency. OD AS is important in many applications such as early alert generation to allow timely security or emergency response. We propose three novel methods to specifically address the challenges in training ODAS models: (1) hard negative samples generation based on Generative Adversarial Network (GAN) to distinguish ambiguous background, (2) explicitly modeling the temporal consistency between data around action start and data succeeding action start, and (3) adaptive sampling strategy to handle the scarcity of training data. We conduct extensive experiments using THUMOS14 and ActivityNet. We show that our proposed methods lead to significant performance gains and improve the state-of-the-art methods. An ablation study confirms the effectiveness of each proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا