ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetesimal Population Synthesis: Pebble Flux Regulated Planetesimal Formation

225   0   0.0 ( 0 )
 نشر من قبل Christian Lenz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an expression for a local planetesimal formation rate proportional to the instantaneous radial pebble flux. The result --- a radial planetesimal distribution --- can be used as initial condition to study the formation of planetary embryos. We follow the idea that one needs particle traps to locally enhance the dust-to-gas ratio sufficiently such that particle gas interactions can no longer prevent planetesimal formation on small scales. The location of these traps can emerge everywhere in the disk. Their occurrence and lifetime is subject of ongoing research, thus they are implemented via free parameters. This enables us to study the influence of the disk properties on the formation of planetesimals, predicting their time dependent formation rates and location of primary pebble accretion. We show that large $alpha$-values of $0.01$ (strong turbulence) prevent the formation of planetesimals in the inner part of the disk, arguing for lower values of around $0.001$ (moderate turbulence), at which planetesimals form quickly at all places where they are needed for proto-planets. Planetesimals form as soon as dust has grown to pebbles ($simmathrm{mm}$ to $mathrm{dm}$) and the pebble flux reaches a critical value, which is after a few thousand years at $2-3,$AU and after a few hundred thousand years at $20-30,$AU. Planetesimal formation lasts until the pebble supply has decreased below a critical value. The final spatial planetesimal distribution is steeper compared to the initial dust and gas distribution which helps to explain the discrepancy between the minimum mass solar nebula and viscous accretion disks.



قيم البحث

اقرأ أيضاً

Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.
Planetesimals are compact astrophysical objects roughly 1-1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physica l processes from small grains in protoplanetary disks. The streaming instability (SI) model states that mm/cm-size particles (pebbles) are aerodynamically collected into self-gravitating clouds which then directly collapse into planetesimals. Here we analyze ATHENA simulations of the SI to characterize the initial properties (e.g., rotation) of pebble clouds. Their gravitational collapse is followed with the PKDGRAV N-body code, which has been modified to realistically account for pebble collisions. We find that pebble clouds rapidly collapse into short-lived disk structures from which planetesimals form. The planetesimal properties depend on the clouds scaled angular momentum, l=L/(M R_H^2 Omega, where L and M are the angular momentum and mass, R_H is the Hill radius, and Omega is the orbital frequency. Low-l pebble clouds produce tight (or contact) binaries and single planetesimals. Compact high-l clouds give birth to binary planetesimals with attributes that closely resemble the equal-size binaries found in the Kuiper belt. Significantly, the SI-triggered gravitational collapse can explain the angular momentum distribution of known equal-size binaries -- a result pending verification from studies with improved resolution. About 10% of collapse simulations produce hierarchical systems with two or more large moons. These systems should be found in the Kuiper belt when observations reach the threshold sensitivity.
Most of planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s during all the process of the formation of the planets. However, as planets grow the relative velocities of the surrounding planetesimals increase from velocities of the order of m/s to a few km/s. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly by 50 percentage of ices. We aim to study the role of planetesimal fragmentation on giant planet formation considering planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions. We improve our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energy threshold with the planetesimal relative velocities and compositions. We also improve in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends to slow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet, the cross-over mass is achieved before the disk time-scale dissipation. While planetesimal fragmentation favors the quick formation of massive cores of 5-10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
We develop a simple model to predict the radial distribution of planetesimal formation. The model is based on the observed growth of dust to mm-sized particles, which drift radially, pile-up, and form planetesimals where the stopping time and dust-to -gas ratio intersect the allowed region for streaming instability-induced gravitational collapse. Using an approximate analytic treatment, we first show that drifting particles define a track in metallicity--stopping time space whose only substantial dependence is on the disks angular momentum transport efficiency. Prompt planetesimal formation is feasible for high particle accretion rates (relative to the gas, $dot{M}_p / dot{M} > 3 times 10^{-2}$ for $alpha = 10^{-2}$), that could only be sustained for a limited period of time. If it is possible, it would lead to the deposition of a broad and massive belt of planetesimals with a sharp outer edge. Including turbulent diffusion and vapor condensation processes numerically, we find that a modest enhancement of solids near the snow line occurs for cm-sized particles, but that this is largely immaterial for planetesimal formation. We note that radial drift couples planetesimal formation across radii in the disk, and suggest that considerations of planetesimal formation favor a model in which the initial deposition of material for giant planet cores occurs well beyond the snow line.
264 - Tim Lichtenberg 2017
Chondrules are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation s cenario, explaining major chemical, isotopic and textural features, remains elusive. Here, we examine the prospect of forming chondrules from planetesimal collisions. We show that intensely melted bodies with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the protoplanetary disk phase. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the window in parameter space for which chondrule formation from planetesimal collisions can be reconciled with the meteoritic record and how our results can be used to further constrain early solar system dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا