ﻻ يوجد ملخص باللغة العربية
We report on a novel approach to synthesize cubic-phase fast ionic conducting garnet-type solid state electrolytes based on Bi doped Li7La3Zr2O12 (LLZO). Bi aliovalent substitution into LLZO utilizing the Pechini processing method is successfully employed to synthesize Li7-xLa3Zr2-xBixO12 compounds. Ionic conductivities up to 2.0 x 10-4 S/cm are achieved in structures not fully densified. Cubic phase Li6La3ZrBiO12 powders are generated in the temperature range from 650 {deg}C to 900 {deg}C in air. In contrast, in the absence of Bi and under identical synthesis conditions, the cubic garnet phase of Li7La3Zr2O12 is not formed below 700 {deg}C while a transformation to the tetragonal phase is observed at 900 {deg}C for the un-doped compound. The critical role of Bi in lowering the formation temperature of the garnet cubic phase and the improvements in ionic conductivity is investigated in this work through microstructural studies and AC impedance measurements. We ascribe the effect of Bi doping in achieving these remarkable improvements to significant enhancements at lower temperatures in the kinetics of the solid-state reaction resulting in explosive grain growth and densification of the garnet. Moreover, XAS is utilized to identify the specific atomic site where Bi is incorporated in the LLZO garnet crystalline structure.
The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound
This article presents studies on low-field electrical conduction in the range 4-to-300 K for a ultrafast material: InGaAs:ErAs grown by molecular beam epitaxy. The unique properties include nano-scale ErAs crystallines in host semiconductor, a deep F
The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particul
Design novel solid oxide electrolyte with enhanced ionic conductivity forms one of the Holy Grails in the field of materials science due to its great potential for wide range of energy applications. Conventional solid oxide electrolyte typically requ
Metallic transition metal dichalcogenides (TMDs) have exhibited various exotic physical properties and hold the promise of novel optoelectronic and topological devices applications. However, the synthesis of metallic TMDs is based on gas-phase method