ترغب بنشر مسار تعليمي؟ اضغط هنا

The Big Dipper: The nature of the extreme variability of the AGN SDSS J2232-0806

78   0   0.0 ( 0 )
 نشر من قبل Daniel Kynoch
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SDSS J2232-0806 (the Big Dipper) has been identified as a slow-blue nuclear hypervariable: a galaxy with no previously known active nucleus, blue colours and large-amplitude brightness evolution occurring on a timescale of years. Subsequent observations have shown that this source does indeed contain an active galactic nucleus (AGN). Our optical photometric and spectroscopic monitoring campaign has recorded one major dimming event (and subsequent rise) over a period of around four years; there is also evidence of previous events consistent with this in archival data recorded over the last twenty years. Here we report an analysis of the eleven optical spectra obtained to date and we assemble a multiwavelength data set including infrared, ultraviolet and X-ray observations. We find that an intrinsic change in the luminosity is the most favoured explanation of the observations, based on a comparison of continuum and line variability and the apparent lagged response of the hot dust. This source, along with several other recently-discovered changing-look objects, demonstrate that AGN can exhibit large-amplitude luminosity changes on timescales much shorter than those predicted by standard thin accretion disc models.

قيم البحث

اقرأ أيضاً

We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500 - 920 $AA$) of high luminosity quasars using HST (low to intermediate redshift sample) and SDSS (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is $> 2times 10^{7}$ sec compared to $< 1.5times 10^{7}$ sec. Based on an excess variance analysis, for time intervals $< 2times 10^{7}$ sec in the quasar rest frame, $10%$ of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals $>2times 10^{7}$ sec in the quasar rest frame, $55%$ of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between $2.5times 10^{7}$ sec and $3.16times 10^{7}$ sec (1 yr). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these time scales. A threshold time scale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0 - 7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability time scale.
Rapid, large amplitude variability at optical to X-ray wavelengths is now seen in an increasing number of Seyfert galaxies and luminous quasars. The variations imply a global change in accretion power, but are too rapid to be communicated by inflow t hrough a standard thin accretion disc. Such discs are long known to have difficulty explaining the observed optical/UV emission from active galactic nuclei. Here we show that alternative models developed to explain these observations have larger scale heights and shorter inflow times. Accretion discs supported by magnetic pressure in particular are geometrically thick at all luminosities, with inflow times as short as the observed few year timescales in extreme variability events to date. Future time-resolved, multi-wavelength observations can distinguish between inflow through a geometrically thick disc as proposed here, and alternative scenarios of extreme reprocessing of a central source or instability-driven limit cycles.
We examine archival XMM-Newton data on the extremely variable narrow-line Seyfert 1 (NLS1) active galactic nucleus (AGN) 1H 0707-495. We construct fractional excess variance (Fvar) spectra for each epoch, including the recent 2019 observation taken s imultaneously with eROSITA. We explore both intrinsic and environmental absorption origins for the variability in different epochs, and examine the effect of the photoionised emission lines from outflowing gas. In particular, we show that the unusual soft variability first detected by eROSITA in 2019 is due to a combination of an obscuration event and strong suppression of the variance at 1 keV by photoionised emission, which makes the variance below 1 keV appear more extreme. We also examine the variability on long timescales, between observations, and find that it is well described by a combination of intrinsic variability and absorption variability. We suggest that the typical extreme high frequency variability which 1H 0707-495 is known for is intrinsic to the source, but the large amplitude, low frequency variability that causes prolonged low-flux intervals is likely dominated by variable low-ionisation, low velocity absorption.
77 - R. Iaria , G. Lavagetto , A. DAi 2006
We present the results of a 73 ks long Chandra observation of the dipping source X 1624-490. During the observation a complex dip lasting 4 hours is observed. We analyse the persistent emission detecting, for the first time in the 1st-order spectra o f X 1624-490, an absorption line associated to ion{Ca}{xx}. We confirm the presence of the ion{Fe}{xxv} K$_alpha$ and ion{Fe}{xxvi} K$_alpha$ absorption lines with a larger accuracy with respect to a previous XMM observation. Assuming that the line widths are due to a bulk motion or a turbulence associated to the coronal activity, we estimate that the lines have been produced in a photoionized absorber between the coronal radius and the outer edge of the accretion disk.
Massive spectroscopic surveys like the SDSS have revolutionized the way we study AGN and their relations to the galaxies they live in. A first step in any such study is to define samples of different types of AGN on the basis of emission line ratios. This deceivingly simple step involves decisions on which classification scheme to use and data quality censorship. Galaxies with weak emission lines are often left aside or dealt with separately because one cannot fully classify them onto the standard Star-Forming, Seyfert of LINER categories. This contribution summarizes alternative classification schemes which include this very numerous population. We then study how star-formation histories and physical properties of the hosts vary from class to class, and present compelling evidence that the emission lines in the majority of LINER-like systems in the SDSS are not powered by black-hole accretion. The data are fully consistent with them being galaxies whose old stars provide all the ionizing power needed to explain their line ratios and luminosities. Such retired galaxies deserve a place in the emission line taxonomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا