ترغب بنشر مسار تعليمي؟ اضغط هنا

The $ u$-process with fully time-dependent supernova neutrino emission spectra

45   0   0.0 ( 0 )
 نشر من قبل Andre Sieverding
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutrino process that occurs in the outer stellar shells during a supernova explosion and involves neutrino-nucleus reactions produces a range of rare, stable and radioactive isotopes. We improve previous $ u$-process studies by using, for the first time, the time-dependent neutrino emission spectra, as predicted from supernova simulations, rather than a simplified parametric description modeled after the neutron-star cooling phase. In particular, our calculations use time-dependent neutrino spectra for all neutrino species, consider their deviation from a Fermi-Dirac distribution and account for the neutrino emission from the neutrino burst and accretion phases. We find that the time-dependent treatment of the neutrino emission spectra results in higher yields for the selected nuclei produced by the $ u$~process as compared to previous studies and also compared to the approximation of assuming constant neutrino energies corresponding to the time-averaged mean energy radiated in each species. The effect is largest for nuclides produced by charged-current reactions. Our results reflect the dynamical competition between neutrino-induced reactions and the effect of the shock passage through the star. By varying the neutrino burst luminosity and the duration of the accretion phase, we study the impact of these early emission phases and their uncertainties on the $ u$-process nucleosynthesis. We find that the deviation of the neutrino spectra from a Fermi-Dirac distribution calculated in supernova simulations has a negligible effect on the $ u$-process yields.

قيم البحث

اقرأ أيضاً

A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, s tationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this paper we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced { u}-process 11B and or 7Li encapsulated in the grains. The synthesis of 11B and 7Li via neutrino-induced nucleon emission (the { u} -process) in supernovae is sensitive to the neutrino mass hierarchy for finite sin^2(2{theta}13) > 0.001}. This sensitivity arises because, when there is 13 mixing, the average electron neutrino energy for charged-current neutrino reactions is larger for a normal mass hierarchy than for an inverted hierarchy. Recent constraints on {theta}13 from the Daya Bay, Double Chooz, MINOS, RENO and T2K collaborations all suggest that indeed sin^2(2{theta}13) > 0.001}. We examine the possible implications of these new results based upon a Bayesian analysis of the uncertainties in the measured meteoritic material and the associated supernova nucleosynthesis models. We show that although the uncertainties are large, they hint at a marginal preference for an inverted neutrino mass hierarchy. We discuss the possibility that an analysis of more X grains enriched in Li and B along with a better understanding of the relevant stellar nuclear and neutrino reactions could eventually reveal the neutrino mass hierarchy.
We calculate the energy spectra of cosmic rays (CR) and their secondaries produced in a supernova remnant (SNR), taking into account the time-dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescrib ed diffusioncoefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: The positron/electron ratio and the antiproton/proton ratio are a few percent and few $times 10^{-5}$, respectively. Both ratios do not rise with energy.
Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. Since none of the searches has produced a statistically significant signal, upper limits on the neutrino fluences are derived and compared to the predictions from theoretical models.
71 - A. Albert , M. Andre , G. Anton 2016
ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A timedependent search has been applied to a list of 33 x-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earths atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter predictions for some astrophysical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا