ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz Atmospheric Windows for High Angular Resolution Terahertz Astronomy from Dome A

58   0   0.0 ( 0 )
 نشر من قبل Hiroshi Matsuo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atmospheric transmission from Dome A, Antarctica, presents new possibilities in the field of terahertz astronomy, where space telescopes have been the only observational tools until now. Using atmospheric transmission measurements from Dome A with a Fourier transform spectrometer, transmission spectra and long-term stabilities have been analyzed at 1.461 THz, 3.393 THz, 5.786 THz and 7.1 THz, which show that important atmospheric windows for terahertz astronomy open for a reasonable length of time in the winter season. With large aperture terahertz telescopes and interferometers at Dome A, high angular resolution terahertz observations are foreseen of atomic fine-structure lines from ionized gas and a water ice feature from protoplanetary disks.



قيم البحث

اقرأ أيضاً

The terahertz and far-infrared (FIR) band, from approximately 0.3 THz to 15 THz (1 mm to 20 micron), is important for astrophysics as the thermal radiation of much of the universe peaks at these wavelengths and many spectral lines that trace the cycl e of interstellar matter also lie within this band. However, water vapor renders the terrestrial atmosphere opaque to this frequency band over nearly all of the Earths surface. Early radiometric measurements below 1 THz at Dome A, the highest point of the cold and dry Antarctic ice sheet, suggest that it may offer the best possible access for ground-based astronomical observations in the terahertz and FIR band. To address uncertainty in radiative transfer modelling, we carried out measurements of atmospheric radiation from Dome A spanning the entire water vapor pure rotation band from 20 micron to 350 micron wavelength by a Fourier transform spectrometer. Our measurements expose atmospheric windows having significant transmission throughout this band. Furthermore, by combining our broadband spectra with auxiliary data on the atmospheric state over Dome A, we set new constraints on the spectral absorption of water vapor at upper tropospheric temperatures important for accurately modeling the terrestrial climate. In particular, we find that current spectral models significantly underestimate the H2O continuum absorption.
Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the ele ctromagnetic spectrum, the positional accuracy of current and near future gravitational wave detectors is limited to between tens and hundreds of square degrees, which makes it extremely challenging to identify the host galaxies of gravitational wave events or to confidently detect any electromagnetic counterparts. Gravitational wave observations provide information on source properties and distances that is complementary to the information in any associated electromagnetic emission and that is very hard to obtain in any other way. Observing systems with multiple messengers thus has scientific potential much greater than the sum of its parts. A gravitational wave detector with higher angular resolution would significantly increase the prospects for finding the hosts of gravitational wave sources and triggering a multi-messenger follow-up campaign. An observatory with arcminute precision or better could be realised within the Voyage 2050 programme by creating a large baseline interferometer array in space and would have transformative scientific potential. Precise positional information of standard sirens would enable precision measurements of cosmological parameters and offer new insights on structure formation; a high angular resolution gravitational wave observatory would allow the detection of a stochastic background and resolution of the anisotropies within it; it would also allow the study of accretion processes around black holes; and it would have tremendous potential for tests of modified gravity and the discovery of physics beyond the Standard Model.
Very Long Baseline Interferometry (VLBI) offers unrivalled resolution in studies of celestial radio sources. The subjects of interest of the IAU Symposium No. 356, the Active Galactic Nuclei (AGN) of all types, constitute the major observing sample o f modern VLBI networks. At present, the largest in the world in terms of the number of telescopes and geographical coverage is the European VLBI Network (EVN), which operates under the open sky policy via peer-reviewed observing proposals. Recent EVN observations cover a broad range of science themes from high-sensitivity monitoring of structural changes in inner AGN areas to observations of tidal eruptions in AGN cores and investigation of redshift-dependent properties of parsec-scale radio structures of AGN. All the topics above should be considered as potentially rewarding scientific activities of the prospective African VLBI Network (AVN), a natural scientific ally of EVN. This contribution briefly describes the status and near-term strategy for the AVN development as a southern extension of the EVN-AVN alliance and as an eventual bridge to the Square Kilometre Array (SKA) with its mid-frequency core in South Africa.
81 - Karl Strecker , Sabit Ekin , 2019
We report and demonstrate for the first time a method to compensate atmospheric group velocity dispersion of terahertz pulses. In ultra-wideband or impulse radio terahertz wireless communication, the atmosphere reshapes terahertz pulses via group vel ocity dispersion, a result of the frequency-dependent refractivity of air. Without correction, this can significantly degrade the achievable data transmission rate. We present a method for compensating the atmospheric dispersion of terahertz pulses using a cohort of stratified media reflectors. Using this method, we compensated group velocity dispersion in the 0.2-0.3 THz channel under common atmospheric conditions. Based on analytic and numerical simulations, the method can exhibit an in-band power efficiency of greater than 98% and dispersion compensation up to 99% of ideal. Simulations were validated by experimental measurements.
Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnant or area in Chile. In this context, we report on measurements of the sky opacity at 200 um over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environ- ment. Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astron- omy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 um is achieved for 75% of the time. The 200-um window opens with a typical transmission of 10% to 15% for 25% of the time. Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 {mu}m are possible all year round, and the 200-um window opens long enough and with a sufficient transparency to be useful. Although the polar environment severely constrains hardware design, a permanent observatory with appropriate technical capabilities is feasible. Because of the very good astronomical conditions, high angular resolution and time series (multi-year) observations at Dome C with a medium size single dish telescope would enable unique studies to be conducted, some of which are not otherwise feasible even from space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا