ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean field and two-body nuclear effects in inclusive electron scattering on argon, carbon and titanium: the superscaling approach

68   0   0.0 ( 0 )
 نشر من قبل Guillermo D. Megias Dr
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the predictions of the SuSAv2 model including two-particle two-hole meson-exchange currents with the recent JLab data for inclusive electron scattering on three different targets (C, Ar and Ti). The agreement is very good over the full energy spectrum, with some discrepancy seen only in the deep inelastic region. The 2p2h response, peaked in the dip region between the quasielastic and $Delta$-resonance peak, is essential to reproduce the data. We also analyze the $k_F$ (Fermi momentum) dependence of the data in terms of scaling of second kind, showing that the 2p2h response scales very differently from the quasielastic one, in full accord with what is predicted by the model. The results represent a valuable test of the applicability of the model to neutrino scattering processes on different nuclei.

قيم البحث

اقرأ أيضاً

86 - Maria B. Barbaro 2006
The superscaling properties of electron scattering data are used to extract model-independent predictions for neutrino-nucleus cross sections.
We suggest that superscaling in electroweak interactions with nuclei, namely the observation that the reduced electron-nucleus cross sections are to a large degree independent of the momentum transfer and of the nuclear species, can be used as a tool to obtain precise predictions for neutrino-nucleus cross sections in both charged and neutral current-induced processes.
A Greens function approach to the inclusive quasielastic ($e,e$) scattering is presented. The components of the nuclear response are written in terms of the single-particle optical model Greens function. The explicit calculation of the Greens functio n can be avoided by its spectral representation, which is based on a biorthogonal expansion in terms of the eigenfunctions of the non-Hermitian optical potential and of its Hermitian conjugate. This allows one to treat final state interactions consistently in the inclusive ($e,e$) and in the exclusive ($e,eN$) reactions. Numerical results for the longitudinal and transverse response functions obtained in a nonrelativistic and in a relativistic framework are presented and discussed also in comparison with data.
In this work, we study the influence of nuclear medium effects on various parton model sum rules in nuclei and compare the results with the free nucleon case. We have used relativistic nucleon spectral function to take into account Fermi motion, bind ing and nucleon correlations. The pion and rho meson cloud contributions have been incorporated in a microscopic model. The effect of shadowing has also been considered.
The extraction of neutrino mixing parameters from accelerator-based neutrino oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino-interaction event generators. Experimental tests of these generator s are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator ($e$-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MEC) based on the theory-inspired SuSAv2 approach. Comparing the new $e$-GENIE predictions with inclusive electron scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer-interactions, which are dominated by resonance production, are still not well modeled by $e$-GENIE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا