ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Cosmology: Investigating Dark Matter & Exotic Physics in the Dark Ages using the Redshifted 21-cm Global Spectrum

82   0   0.0 ( 0 )
 نشر من قبل Jack Burns
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dark Ages, probed by the redshifted 21-cm signal, is the ideal epoch for a new rigorous test of the standard LCDM cosmological model. Divergences from that model would indicate new physics, such as dark matter decay (heating) or baryonic cooling beyond that expected from adiabatic expansion of the Universe. In the early Universe, most of the baryonic matter was in the form of neutral hydrogen (HI), detectable via its ground states spin-flip transition. A measurement of the redshifted 21-cm spectrum maps the history of the HI gas through the Dark Ages and Cosmic Dawn and up to the Epoch of Reionization (EoR). The Experiment to Detect the Global EoR Signature (EDGES) recently reported an absorption trough at 78 MHz (redshift z of 17), similar in frequency to expectations for Cosmic Dawn, but about 3 times deeper than was thought possible from standard cosmology and adiabatic cooling of HI. Interactions between baryons and slightly-charged dark matter particles with electron-like mass provide a potential explanation of this difference but other cooling mechanisms are also being investigated to explain these results. The Cosmic Dawn trough is affected by cosmology and the complex astrophysical history of the first luminous objects. Another trough is expected during the Dark Ages, prior to the formation of the first stars and thus determined entirely by cosmological phenomena (including dark matter). Observations on or in orbit above the Moons farside can investigate this pristine epoch (15-40 MHz; z=100-35), which is inaccessible from Earth. A single cross-dipole antenna or compact array can measure the amplitude of the 21-cm spectrum to the level required to distinguish (at >5$sigma$}) the standard cosmological model from that of additional cooling derived from current EDGES results. This observation constitutes a powerful, clean probe of exotic physics in the Dark Ages.

قيم البحث

اقرأ أيضاً

The Dark Ages are the period between the last scattering of the cosmic microwave background and the appearance of the first luminous sources, spanning approximately 1100 < z < 30. The only known way to measure fluctuations in this era is through the 21-cm line of neutral hydrogen. Such observations have enormous potential for cosmology, because they span a large volume while the fluctuations remain linear even on small scales. Observations of 21-cm fluctuations during this era can therefore constrain fundamental aspects of our Universe, including inflation and any exotic physics of dark matter. While the observational challenges to these low-frequency 21-cm observations are enormous, especially from the terrestrial environment, they represent an important goal for cosmology.
Dark matter interactions with massless or very light Standard Model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g. early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of dark ages and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the f ormation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-$alpha$ forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.
An array of low-frequency dipole antennas on the lunar farside surface will probe a unique, unexplored epoch in the early Universe called the Dark Ages. It begins at Recombination when neutral hydrogen atoms formed, first revealed by the cosmic micro wave background. This epoch is free of stars and astrophysics, so it is ideal to investigate high energy particle processes including dark matter, early Dark Energy, neutrinos, and cosmic strings. A NASA-funded study investigated the design of the instrument and the deployment strategy from a lander of 128 pairs of antenna dipoles across a 10 kmx10 km area on the lunar surface. The antenna nodes are tethered to the lander for central data processing, power, and data transmission to a relay satellite. The array, named FARSIDE, would provide the capability to image the entire sky in 1400 channels spanning frequencies from 100 kHz to 40 MHz, extending down two orders of magnitude below bands accessible to ground-based radio astronomy. The lunar farside can simultaneously provide isolation from terrestrial radio frequency interference, the Earths auroral kilometric radiation, and plasma noise from the solar wind. It is thus the only location within the inner solar system from which sky noise limited observations can be carried out at sub-MHz frequencies. Through precision calibration via an orbiting beacon and exquisite foreground characterization, the farside array would measure the Dark Ages global 21-cm signal at redshifts z~35-200. It will also be a pathfinder for a larger 21-cm power spectrum instrument by carefully measuring the foreground with high dynamic range.
The recent measurement of the global 21-cm absorption signal reported by the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) Collaboration is in tension with the prediction of the $Lambda$CDM model at a $3.8,sigma$ significanc e level. In this work, we report that this tension can be released by introducing an interaction between dark matter and vacuum energy. We perform a model parameter estimation using a combined dataset including EDGES and other recent cosmological observations, and find that the EDGES measurement can marginally improve the constraint on parameters that quantify the interacting vacuum, and that the combined dataset favours the $Lambda$CDM at 68% CL. This proof-of-the-concept study demonstrates the potential power of future 21-cm experiments to constrain the interacting dark energy models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا