ترغب بنشر مسار تعليمي؟ اضغط هنا

Competition-driven evolution of organismal complexity

83   0   0.0 ( 0 )
 نشر من قبل Iaroslav Ispolatov
 تاريخ النشر 2019
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like adaptive zones, punctuated equilibrium and blunderbuss patterns, require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and the resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features.



قيم البحث

اقرأ أيضاً

How cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been the standard framework to address this issue. In most models, every individual plays with all others, and then reproduce and die according to what they ea rn. This amounts to assuming that selection takes place at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors. Similar non trivial phenomena arise in other binary games and even in more complicated settings such as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model the emergence of cooperation, and one that has so far been overlooked.
Evolutionary game theory is employed to study topological conditions of scale-free networks for the evolution of cooperation. We show that Apollonian Networks (ANs) are perfect scale-free networks, on which cooperation can spread to all individuals, even though there are initially only 3 or 4 hubs occupied by cooperators and all the others by defectors. Local topological features such as degree, clustering coefficient, gradient as well as topology potential are adopted to analyze the advantages of ANs in cooperation enhancement. Furthermore, a degree-skeleton underlying ANs is uncovered for understanding the cooperation diffusion. Constructing this kind degree-skeleton for random scale-free networks promotes cooperation level close to that of Barabasi-Albert networks, which gives deeper insights into the origin of the latter on organization and further promotion of cooperation.
Microorganisms live in environments that inevitably fluctuate between mild and harsh conditions. As harsh conditions may cause extinctions, the rate at which fluctuations occur can shape microbial communities and their diversity, but we still lack an intuition on how. Here, we build a mathematical model describing two microbial species living in an environment where substrate supplies randomly switch between abundant and scarce. We then vary the rate of switching as well as different properties of the interacting species, and measure the probability of the weaker species driving the stronger one extinct. We find that this probability increases with the strength of demographic noise under harsh conditions and peaks at either low, high, or intermediate switching rates depending on both species ability to withstand the harsh environment. This complex relationship shows why finding patterns between environmental fluctuations and diversity has historically been difficult. In parameter ranges where the fittest species was most likely to be excluded, however, the beta diversity in larger communities also peaked. In sum, how environmental fluctuations affect interactions between a few species pairs predicts their effect on the beta diversity of the whole community.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterize d with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.
Adaptive dynamics is a widely used framework for modeling long-term evolution of continuous phenotypes. It is based on invasion fitness functions, which determine selection gradients and the canonical equation of adaptive dynamics. Even though the de rivation of the adaptive dynamics from a given invasion fitness function is general and model-independent, the derivation of the invasion fitness function itself requires specification of an underlying ecological model. Therefore, evolutionary insights gained from adaptive dynamics models are generally model-dependent. Logistic models for symmetric, frequency-dependent competition are widely used in this context. Such models have the property that the selection gradients derived from them are gradients of scalar functions, which reflects a certain gradient property of the corresponding invasion fitness function. We show that any adaptive dynamics model that is based on an invasion fitness functions with this gradient property can be transformed into a generalized symmetric competition model. This provides a precise delineation of the generality of results derived from competition models. Roughly speaking, to understand the adaptive dynamics of the class of models satisfying a certain gradient condition, one only needs a complete understanding of the adaptive dynamics of symmetric, frequency-dependent competition. We show how this result can be applied to number of basic issues in evolutionary theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا