ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural analysis of nuclear spin clusters via two-dimensional nanoscale nuclear magnetic resonance spectroscopy

156   0   0.0 ( 0 )
 نشر من قبل Jiangfeng Du
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional Nuclear Magnetic Resonance (NMR) is essential in molecular structure determination. The Nitrogen-Vacancy (NV) center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale. In this work, we develop a scheme for two-dimensional nanoscale NMR spectroscopy based on quantum controls on an NV center. We carry out a proof of principle experiment on a target of two coupled $^{13}$C nuclear spins in diamond. A COSY-like sequences is used to acquire the data on time domain, which is then converted to frequency domain with the fast Fourier transform (FFT). With the two-dimensional NMR spectrum, the structure and location of the set of nuclear spin are resolved. This work marks a fundamental step towards resolving the structure of a single molecule.



قيم البحث

اقرأ أيضاً

Nuclear magnetic resonance (NMR) spectroscopy has approached the limit of single molecule sensitivity, however the spectral resolution is currently insufficient to obtain detailed information on chemical structure and molecular interactions. Here we demonstrate more than two orders of magnitude improvement in spectral resolution by performing correlation spectroscopy with shallow nitrogen-vacancy (NV) magnetic sensors in diamond. In principle, the resolution is sufficient to observe chemical shifts in $sim$1 T magnetic fields, and is currently limited by molecular diffusion at the surface. We measure oil diffusion rates of $D = 0.15 - 0.2$,nm$^2/mathrm{mu}$s within (5 nm)$^3$ volumes at the diamond surface.
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectros copy. By applying NMR pulses designed using optimal control theory, we demonstrate a factor of $500$ reduction of the proton spin resonance linewidth in a $(50text{-nm})^{text{3}}$ volume of polystyrene and image proton spins in one dimension with a spatial resolution below $2~text{nm}$.
121 - Min Jiang , Wenjie Xu , Yunlan Ji 2019
Ultralow-field nuclear magnetic resonance (NMR) provides a new regime for many applications ranging from materials science to fundamental physics. However, the experimentally observed spectra show asymmetric amplitudes, differing greatly from those p redicted by the standard theory. Its physical origin remains unclear, as well as how to suppress it. Here we provide a comprehensive model to explain the asymmetric spectral amplitudes, further observe more unprecedented asymmetric spectroscopy and find a way to eliminate it. Moreover, contrary to the traditional idea that asymmetric phenomena were considered as a nuisance, we show that more information can be gained from the asymmetric spectroscopy, e.g., the light shift of atomic vapors and the sign of Land$acute{textrm{e}}$ $g$ factor of NMR systems.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<!!1$~$mu$G) magnetic field using a Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra. We also identify and observe the zero-field equivalent of a double-quantum transition in ${}^{13}$C$_2$-acetic acid, and show that such transitions are of use in spectral assignment. Two-dimensional spectroscopy further improves the high resolution attained in zero-field NMR since selection rules on the coherence-transfer pathways allow for the separation of otherwise overlapping resonances into distinct cross-peaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا