ﻻ يوجد ملخص باللغة العربية
The Hall coefficient $R_H$ of Sr$_2$RuO$_4$ exhibits a non-monotonic temperature dependence with two sign reversals. We show that this puzzling behavior is the signature of two crossovers which are key to the physics of this material. The increase of $R_H$ and the first sign change upon cooling are associated with a crossover into a regime of coherent quasiparticles with strong orbital differentiation of the inelastic scattering rates. The eventual decrease and the second sign change at lower temperature is driven by the crossover from inelastic to impurity-dominated scattering. This qualitative picture is supported by quantitative calculations of $R_H(T)$ using Boltzmann transport theory in combination with dynamical mean-field theory, taking into account the effect of spin-orbit coupling. Our insights shed new light on the temperature dependence of the Hall coefficient in materials with strong orbital differentiation, as observed in Hunds metals.
The strange metal is an enigmatic phase whose properties are irreconcilable with the established Fermi liquid theory of conductors. A fundamental question is whether a strange metal and a Fermi liquid are distinct phases of matter, or whether a mater
We study the magnetic susceptibility in the normal state of Sr$_2$RuO$_4$ using dynamical mean-field theory including dynamical vertex corrections. Besides the well known incommensurate response, our calculations yield quasi-local spin fluctuations w
A paradigmatic case of multi-band Mott physics including spin-orbit and Hunds coupling is realised in Ca$_2$RuO$_4$. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy ele
We report a polarization-resolved Raman spectroscopy study of the orbital dependence of the quasiparticles properties in the prototypical multi-band Fermi liquid Srtextsubscript{2}RuOtextsubscript{4}. We show that the quasiparticle scattering rate di
We use Ru $L_3$-edge (2838.5 eV) resonant inelastic x-ray scattering (RIXS) to quantify the electronic structure of Ca$_2$RuO$_4$, a layered $4d$-electron compound that exhibits a correlation-driven metal-insulator transition and unconventional antif