ﻻ يوجد ملخص باللغة العربية
In this work the development results of the TRITIUM project is presented. The main objective of the project is the construction of a near real-time monitor for low activity tritium in water, aimed at in-situ surveillance and radiological protection of river water in the vicinity of nuclear power plants. The European Council Directive 2013/51/Euratom requires that the maximum level of tritium in water for human consumption to be lower than 100 Bq/L. Tritium levels in the cooling water of nuclear power plants in normal operation are much higher than the levels caused by the natural and cosmogenic components, and may easily surmount the limit required by the Directive. The current liquid-scintillation measuring systems in environmental radioactivity laboratories are sensitive to such low levels, but they are not suitable for real-time monitoring. Moreover, there is no currently available device with enough sensitivity and monitoring capabilities that could be used for surveillance of the cooling water of nuclear power plants. A detector system based on scintillation fibers read out by photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development for in-water tritium measurement. This detector will be installed in the vicinity of Almaraz nuclear power plant (Spain) in Spring 2019. An overview of the project development and the results of first prototypes are presented.
In this work we present simulation results for a modular tritium in-water real-time monitor. The system allows for scalability in order to achieve the required sensitivity. The modules are composed by 340 uncladed scintillating fibers immersed in wat
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of beta-decay, provide a largely model-independent probe to the neutrino mass scale
We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170,000 highly pure and spatially-uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good
The direct detection of dark matter particles requires ultra-low background conditions at energies below a few tens of keV. Radioactive isotopes are produced via cosmogenic activation in detectors and other materials and those isotopes constitute a b
Project 8 is a tritium endpoint neutrino mass experiment utilizing a phased program to achieve sensitivity to the range of neutrino masses allowed by the inverted mass hierarchy. The Cyclotron Radiation Emission Spectroscopy (CRES) technique is emplo