ﻻ يوجد ملخص باللغة العربية
The first order hydrodynamic evolution equations for the shear stress tensor, the bulk viscous pressure and the charge current have been studied for a system of quarks and gluons, with a non-vanishing quark chemical potential and finite quark mass. The first order transport coefficients have been obtained by solving an effective Boltzmann equation for the grand-canonical ensemble of quasiquarks and quasigluons. We adopted temperature dependent effective fugacity for the quasiparticles to encode the hot QCD medium effects. The non-trivial energy dispersion of the quasiparticles induces mean field contributions to the transport coefficients whose origin could be directly related to the realization of conservation laws from the effective kinetic theory. Both the QCD equation of state and chemical potential are seen to have a significant impact on the quark-gluon plasma evolution. The shear and bulk viscous corrections to the entropy-four current have been investigated in the framework of the effective kinetic theory. The effect of viscous corrections to the entropy density have been quantified in the case of one dimensional boost-invariant expansion of the system. Further, the first order viscous corrections to the time evolution of temperature along with the description of pressure anisotropy and Reynolds number of the system have been explored for the longitudinal boost-invariant expansion.volution of temperature along with the description of pressure anisotropy of the system have also been explored.
The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parame
We find that the recently developed kinetic theories with spin for massive and massless fermions are smoothly connected. By introducing a reference-frame vector, we decompose the dipole-moment tensor into electric and magnetic dipole moments. We show
We revisit the chiral kinetic equation from high density effective theory approach, finding a chiral kinetic equation differs from counterpart derived from field theory in high order terms in the $O(1/mu)$ expansion, but in agreement with the equatio
We extended our formulation of causal dissipative hydrodynamics [T. Koide textit{et al.}, Phys. Rev. textbf{C75}, 034909 (2007)] to be applicable to the ultra-relativistic regime by considering the extensiveness of irreversible currents. The new equa
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their