ﻻ يوجد ملخص باللغة العربية
Post-processing is a significant step in quantum key distribution(QKD), which is used for correcting the quantum-channel noise errors and distilling identical corrected keys between two distant legitimate parties. Efficient error reconciliation protocol, which can lead to an increase in the secure key generation rate, is one of the main performance indicators of QKD setups. In this paper, we propose a multi-low-density parity-check codes based reconciliation scheme, which can provide remarkable perspectives for highly efficient information reconciliation. With testing our approach through data simulation, we show that the proposed scheme combining multi-syndrome-based error rate estimation allows a more accurate estimation about the error rate as compared with random sampling and single-syndrome estimation techniques before the error correction, as well as a significant increase in the efficiency of the procedure without compromising security and sacrificing reconciliation efficiency.
Bound secret information is classical information that contains secrecy but from which secrecy cannot be extracted. The existence of bound secrecy has been conjectured but is currently unproven, and in this work we provide analytical and numerical ev
Quantum key distribution (QKD) provides information theoretically secures key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys. In previous studies, the lattice-based post-quantum digi
Continuous-variable quantum key distribution employs the quadratures of a bosonic mode to establish a secret key between two remote parties, and this is usually achieved via a Gaussian modulation of coherent states. The resulting secret key rate depe
We propose a method named as double-scanning method, to improve the key rate of measurement-device-independent quantum key distribution (MDI-QKD) drastically. In the method, two parameters are scanned simultaneously to tightly estimate the counts of
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc