ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel water maps towards the vicinity of the black hole Sgr A*

59   0   0.0 ( 0 )
 نشر من قبل Jairo Vladimir Armijos Abenda\\~no
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We study the spatial distribution and kinematics of water emission in a ~64 pc$^2$ region of the Galactic Center (GC) around Sgr A*. We also analyze the water excitation to derive the physical conditions and water abundances in the CND and the `quiescent clouds. Methods: We presented the integrated intensity maps of the ortho 1$_{10}-1_{01}$, and para 2$_{02}-1_{11}$ and 1$_{11}-0_{00}$ water transitions observed with the HIFI instrument on board Herschel. To study the water excitation we used ground state ortho and para H$_2^{18}$O transitions. In our study, we also used SPIRE continuum measurements of the CND. Using a non-LTE radiative transfer code, the water line profiles and dust continuum were modeled. We also used a rotating ring model to reproduce the CND kinematics represented by the PV diagram. Results: We identify the water emission arising from the CND, the Western Streamer, and the 20 and 50 km s$^{-1}$ clouds. The ortho water maps show absorption structures in the range of [-220,10] km s$^{-1}$. The PV diagram shows that the 2$_{02}-1_{11}$ H$_2$O emission traces the CND. We derive high X$_{H_2O}$ of $sim$(0.1-1.3)$times$10$^{-5}$, V$_t$ of 14-23 km s$^{-1}$ and T$_d$ of 15-45 K for the CND, and the lower X$_{rm H_2O}$ of 4$times$10$^{-8}$ and V$_t$ of 9 km s$^{-1}$ for the 20 km s$^{-1}$ cloud. Collisional excitation and dust effects are responsible for the water excitation in the southwest lobe of the CND and the 20 km s$^{-1}$ cloud, whereas only collisions can account for the water excitation in the northeast lobe of the CND. We propose that the water vapor in the CND is caused by grain sputtering by shocks of 10-20 km s$^{-1}$, with some contribution of high temperature and cosmic-ray chemistries plus a PDR chemistry. The low X$_{rm H_2O}$ derived for the 20 km s$^{-1}$ cloud could be partially a consequence of the water freeze-out on grains.

قيم البحث

اقرأ أيضاً

Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple trans itions of HDO in Sgr~B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance ($2.5times 10^{-11}$) in the outer envelope at temperatures below 100~K through a medium abundance ($1.5times 10^{-9}$) in the inner envelope/outer core, at temperatures between 100 and 200~K, and finally a high abundance ($3.5times 10^{-9}$) at temperatures above 200~K in the hot core.
According to some models, there may be a significant population of radio pulsars in the Galactic center. In principle, a beam from one of these pulsars could pass close to the supermassive black hole (SMBH) at the center, be deflected, and be detecte d by Earth telescopes. Such a configuration would be an unprecedented probe of the properties of spacetime in the moderate- to strong-field regime of the SMBH. We present here background on the problem, and approximations for the probability of detection of such beams. We conclude that detection is marginally probable with current telescopes, but that telescopes that will be operating in the near future, with an appropriate multiyear observational program, will have a good chance of detecting a beam deflected by the SMBH.
The hierarchical nature of galaxy formation suggests that a supermassive black hole binary could exist in our galactic center. We propose a new approach to constraining the possible orbital configuration of such a binary companion to the galactic cen ter black hole Sgr A* through the measurement of stellar orbits. Focusing on the star S0-2, we show that requiring its orbital stability in the presence of a companion to Sgr A* yields stringent constraints on the possible configurations of such a companion. Furthermore, we show that precise measurements of {it time variations} in the orbital parameters of S0-2 could yield stronger constraints. Using existing data on S0-2 we derive upper limits on the binary black hole separation as a function of the companion mass. For the case of a circular orbit, we can rule out a 10^5 M_sun companion with a semimajor axis greater than 170 astronomical units or 0.8 mpc. This is already more stringent than bounds obtained from studies of the proper motion of Sgr A*. Including other stars orbiting the galactic center should yield stronger constraints that could help uncover the presence of a companion to Sgr A*. We show that a companion can also affect the accretion process, resulting in a variability which may be consistent with the measured infrared flaring timescales and amplitudes. Finally, if such a companion exists, it will emit gravitational wave radiation, potentially detectable with LISA.
We observed OH, H$_2$O, HN$_3$, C$^{18}$O, and C$_I$ towards the +50 km/s cloud (M-0.02-0.07), the CND and the +20 km/s (M-0.13-0.08) cloud in the Sgr A complex with the VLA, Odin and SEST. Strong OH absorption, H$_2$O emission and absorption lines w ere seen at all three positions. Strong C$^{18}$O emissions were seen towards the +50 and +20 km/s clouds. The CND is rich in H$_2$O and OH, and these abundances are considerably higher than in the surrounding clouds, indicating that shocks, star formation and clump collisions prevail in those objects. A comparison with the literature reveals that it is likely that PDR chemistry including grain surface reactions, and perhaps also the influences of shocks has led to the observed abundances of the observed molecular species studied here. In the redward high-velocity line wings of both the +50 and +20 km/s clouds and the CND, the very high H$_2$O abundances are suggested to be caused by the combined action of shock desorption from icy grain mantles and high-temperature, gas-phase shock chemistry. Only three of the molecules are briefly discussed here. For OH and H$_2$O three of the nine observed positions are shown, while a map of the C$^{18}$O emission is provided. An extensive paper was recently published with Open Access (Karlsson et al. 2013; http://www.aanda.org/articles/aa/pdf/2013/06/aa20471-12.pdf ).
It is often assumed that the strong gravitational field of a super-massive black hole disrupts an adjacent molecular cloud preventing classical star formation in the deep potential well of the black hole. Yet, young stars have been observed across th e entire nuclear star cluster of the Milky Way including the region close ($<$0.5~pc) to the central black hole, Sgr A*. Here, we focus particularly on small groups of young stars, such as IRS 13N located 0.1 pc away from Sgr A*, which is suggested to contain about five embedded massive young stellar objects ($<$1 Myr). We perform three dimensional hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a $4times10^6~M_{odot}$ black hole, to constrain the formation and the physical conditions of such groups. The molecular clumps in our models assumed to be isothermal containing 100 $M_{odot}$ in $<$0.2 pc radius. Such molecular clumps exist in the circumnuclear disk of the Galaxy. In our highly eccentrically orbiting clump, the strong orbital compression of the clump along the orbital radius vector and perpendicular to the orbital plane causes the gas densities to increase to values higher than the tidal density of Sgr A*, which are required for star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا