ﻻ يوجد ملخص باللغة العربية
We study the long-time behavior of the Cesaro means of fundamental solutions for fractional evolution equations corresponding to random time changes in the Brownian motion and other Markov processes. We consider both stable subordinators leading to equations with the Caputo-Djrbashian fractional derivative and more general cases corresponding to differential-convolution operators, in particular, distributed order derivatives.
We study semigroups generated by two-dimensional relativistic Hamiltonians with magnetic field. In particular, for compactly supported radial magnetic field we show how the long time behaviour of the associated heat kernel depends on the flux of the
We give a direct proof of the sharp two-sided estimates, recently established in [4,9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1, 1}$ open sets by using Duhamel formula. We also obtain a gradient e
We study inverse boundary problems for a one dimensional linear integro-differential equation of the Gurtin--Pipkin type with the Dirichlet-to-Neumann map as the inverse data. Under natural conditions on the kernel of the integral operator, we give t
By using Duhamels formula, we prove sharp two-sided estimates for the heat kernel of spectral fractional Laplacian with time-dependent gradient perturbation in bounded $C^{1,1}$ domains. Moreover, we also obtain gradient estimate as well as Holder continuity of the gradient of the heat kernel.
We get a generalization of Kreins formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case $A=-partial_x^2+( u^2-1/4)/x^2+V(x)$, where $0< u<1$ and $V(x)$