ترغب بنشر مسار تعليمي؟ اضغط هنا

Ordered Hexagonal Patterns via Notch-Delta Signaling

50   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2019
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many developmental processes in biology utilize Notch-Delta signaling to construct an ordered pattern of cellular differentiation. This signaling modality is based on nearest-neighbor contact, as opposed to the more familiar mechanism driven by the release of diffusible ligands. Here, exploiting this juxtacrine property, we present an exact treatment of the pattern formation problem via a system of nine coupled ordinary differential equations. The possible patterns that are realized for realistic parameters can be analyzed by considering a co-dimension 2 pitchfork bifurcation of this system. This analysis explains the observed prevalence of hexagonal patterns with high Delta at their center, as opposed to those with central high Notch levels. We show that outside this range of parameters, in particular for low cis-coupling, a novel kind of pattern is produced, where high Delta cells have high Notch as well. It also suggests that the biological system is only weakly first order, so that an additional mechanism is required to generate the observed defect-free patterns. We construct a simple strategy for producing such defect-free patterns.



قيم البحث

اقرأ أيضاً

Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase- phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov (WK) optimal noise filter. Using concepts from umbral calculus, we generalize the linear WK theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function---like ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways, and the manipulation of pathways through experimental probes like oscillatory input.
We review recent results obtained from simple individual-based models of biological competition in which birth and death rates of an organism depend on the presence of other competing organisms close to it. In addition the individuals perform random walks of different types (Gaussian diffusion and L{e}vy flights). We focus on how competition and random motions affect each other, from which spatial instabilities and extinctions arise. Under suitable conditions, competitive interactions lead to clustering of individuals and periodic pattern formation. Random motion has a homogenizing effect and then delays this clustering instability. When individuals from species differing in their random walk characteristics are allowed to compete together, the ones with a tendency to form narrower clusters get a competitive advantage over the others. Mean-field deterministic equations are analyzed and compared with the outcome of the individual-based simulations.
The spatio-temporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatio-temporal patterns arising from the cyclic competition between three speci es in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising rock-paper-scissors interactions via dominance removal and replacement, reproduction, mutations, pair-exchange and hopping of individuals. By combining analytical and numerical methods, we obtain the models phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away far from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the models Hopf bifurcation. Our results allows us to clarify when spatial rock-paper-scissors competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.
Transforming Growth Factor-beta (TGF-beta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGF-beta signalling are the Smad proteins, which upon TGF-beta stimulation accumulate in the nucleus and regulate transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experimentally determined cellular Smad concentrations (isoforms 2, 3, and 4). We found in mink lung epithelial cells that Smad2 (8.5-12 x 10^4 molecules/cell) was present in similar amounts to Smad4 (9.3-12 x 10^4 molecules/cell), while both were in excess of Smad3 (1.1-2.0 x 10^4 molecules/cell). Variation of the model parameters and statistical analysis showed that Smad nuclear accumulation is most sensitive to parameters affecting the rates of RSmad phosphorylation and dephosphorylation and Smad complex formation/dissociation in the nucleus. Deleting Smad4 from the model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an important mechanism for Smad nuclear accumulation. Furthermore, we observed that binding factors constitutively localised to the nucleus do not efficiently mediate Smad nuclear accumulation if dephosphorylation is rapid. We therefore conclude that an imbalance in the rates of R-Smad phosphorylation and dephosphorylation is likely an important mechanism of Smad nuclear accumulation during TGF-beta signalling.
Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated wit h cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because this would help determine effective points of attack by therapeutics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا