ﻻ يوجد ملخص باللغة العربية
We introduced a new kind of patterns named Special-Hadamard patterns, which could be used as structured illuminations of computational ghost imaging. Special-Hadamard patterns can get a better image quality than Hadamard patterns in a noisy environment. We can completely reconstruct the original object in a noiseless environment by using Special-Hadamard patterns, and the size of object also can be adjusted arbitrarily, these advantages cannot be achieved by other common patterns. We also performed simulations to compare the results of Special Hadamard patterns with the results of Hadamard patterns. We found Special Hadamard patterns can greatly improve the image quality of computational ghost imaging.
Computational ghost imaging is a promising technique for single-pixel imaging because it is robust to disturbance and can be operated over broad wavelength bands, unlike common cameras. However, one disadvantage of this method is that it has a long c
Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three- dime
We present a framework for computational ghost imaging based on deep learning and customized pink noise speckle patterns. The deep neural network in this work, which can learn the sensing model and enhance image reconstruction quality, is trained mer
Ghost imaging (GI) is a novel imaging technique based on the second-order correlation of light fields. Due to limited number of samplings in practice, traditional GI methods often reconstruct objects with unsatisfactory quality. To improve the imagin
In this paper, we propose an advanced framework of ghost edge imaging, named compressed ghost edge imaging (CGEI). In the scheme, a set of structured speckle patterns with pixel shifting are illuminated on an unknown object, and the output is collect