ﻻ يوجد ملخص باللغة العربية
The evaluation formula for an elliptic beta integral of type $G_2$ is proved. The integral is expressed by a product of Ruijsenaars elliptic gamma functions, and the formula includes that of Gustafsons $q$-beta integral of type $G_2$ as a special limiting case as $pto 0$. The elliptic beta integral of type $BC_1$ by van Diejen and Spiridonov is effectively used in the proof of the evaluation formula.
We investigate the connection problem for the Jackson integral of type $A_n$. Our connection formula implies a Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific multiple series. Intr
The Ramanujan $_1psi_1$ summation theorem in studied from the perspective of $q$-Jackson integrals, $q$-difference equations and connection formulas. This is an approach which has previously been shown to yield Baileys very-well-poised $_6psi_6$ summ
The Dixon--Anderson integral is a multi-dimensional integral evaluation fundamental to the theory of the Selberg integral. The $_1psi_1$ summation is a bilateral generalization of the $q$-binomial theorem. It is shown that a $q$-generalization of the
We establish a determinant formula for the bilinear form associated with the elliptic hypergeometric integrals of type $BC_n$ by studying the structure of $q$-difference equations to be satisfied by them. The determinant formula is proved by combinin
The connection formula for the Jackson integral of type $BC_n$ is obtained in the form of a Sears--Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific bilateral multiple series. The co