ترغب بنشر مسار تعليمي؟ اضغط هنا

Unidirectional light transmission by two-layer nanostructures interacting via optical near-fields

98   0   0.0 ( 0 )
 نشر من قبل Serge Huant
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate unidirectional light transmission through two-layer nanostructured materials considering that the horizontal-to-vertical-polarization conversion efficiency in the forward direction and the vertical-to-horizontal efficiency in the backward direction, which are usually equivalent due to optical reciprocity, are different. The different ways of transferring light momentum in the forward and backward directions via optical near-fields between the layers are responsible for the unidirectionality of light, which was theoretically investigated in our recent work [J. Opt. Soc. Am. B 31, 2404-2413]. With two-layer metal nanostructures experimentally fabricated via a repeated lift-off technique, consistent optical characteristics are observed, verifying the utilization of the large momentum of optical near-fields.



قيم البحث

اقرأ أيضاً

We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provide s results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities.
Here we study a simple way of controlling the emitted fields of sub-wavelength nanometric sources. The system consists of arrays of nanoparticles (NPs) embedded in optical active media. The key concept is the careful tuning of NPs damping factors, wh ich changes the eigenmodes decay rates of the whole array. This, at long time, leads to a locking of relative phases and frequencies of individual localized-surfaces-plasmons (LSPs) and, thus, controlls the emitted field. The amplitude of the LSPs oscillations can be kept constant by embedding the system in optical active media. In the case of full loss compensation, this implies that, not only the relative phases, but also the amplitudes of the LSPs remain fixed, leading us, additionally, to interpret the process as a new example of synchronization. The proposed approach can be used as a general way of controlling and designing the electromagnetic fields emitted by nanometric sources, which can find applications in optoelectronic, nanoscale lithography and probing microscopy.
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in pl asmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
We investigate the appearance of pi lapses in the transmission phase theta of a two-level quantum dot with Coulomb interaction U. Using the numerical and functional renormalization group methods we study the entire parameter space for spin-polarized as well as spin-degenerate dots, modeled by spinless or spinful electrons, respectively. We investigate the effect of finite temperatures T. For small T and sufficiently small single-particle spacings delta of the dot levels we find pi phase lapses between two transmission peaks in an overwhelming part of the parameter space of the level-lead couplings. For large delta the appearance or not of a phase lapse between resonances depends on the relative sign of the level-lead couplings in analogy to the U=0 case. We show that this generic scenario is the same for spin-polarized and spin-degenerate dots. We emphasize that in contrast to dots with more levels, for a two-level dot with small delta and generic dot-lead couplings (that is up to cases with special symmetry) the universal phase lapse behavior is already established at U=0. The most important effect of the Coulomb interaction is to increase the separation of the transmission resonances. The relation of the appearance of phase lapses to the inversion of the population of the dot levels is discussed. For the spin-polarized case and low temperatures we compare our results to recent mean-field studies. For small delta correlations are found to strongly alter the mean-field picture.
Intense efforts have been made in recent years to realize nonlinear optical interactions at the single-photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by using single atoms or other quantum emitters while the possibility of achieving strong second-order nonlinearities remains unexplored. Here, we describe a novel technique to realize such nonlinearities using graphene, exploiting the strong per-photon fields associated with tightly confined graphene plasmons in combination with spatially nonlocal nonlinear optical interactions. We show that in properly designed graphene nanostructures, these conditions enable extremely strong internal down-conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process of second harmonic generation. A separate issue is how such strong internal nonlinearities can be observed, given the nominally weak coupling between these plasmon resonances and free-space radiative fields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we show that the internal nonlinearities can manifest themselves as efficient frequency conversion of radiative fields at extremely low input powers. On the other hand, the development of techniques to efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level of single input photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا