ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

78   0   0.0 ( 0 )
 نشر من قبل John Blanchard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of dark matter, the invisible substance making up over $80%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, we use ultralow-field NMR to probe the axion-fermion wind coupling and dark-photon couplings to nuclear spins. No dark matter signal was detected above background, establishing new experimental bounds for dark-matter bosons with masses ranging from $1.8times 10^{-16}$ to $7.8times 10^{-14}$ eV.


قيم البحث

اقرأ أيضاً

121 - Min Jiang , Wenjie Xu , Yunlan Ji 2019
Ultralow-field nuclear magnetic resonance (NMR) provides a new regime for many applications ranging from materials science to fundamental physics. However, the experimentally observed spectra show asymmetric amplitudes, differing greatly from those p redicted by the standard theory. Its physical origin remains unclear, as well as how to suppress it. Here we provide a comprehensive model to explain the asymmetric spectral amplitudes, further observe more unprecedented asymmetric spectroscopy and find a way to eliminate it. Moreover, contrary to the traditional idea that asymmetric phenomena were considered as a nuisance, we show that more information can be gained from the asymmetric spectroscopy, e.g., the light shift of atomic vapors and the sign of Land$acute{textrm{e}}$ $g$ factor of NMR systems.
105 - Min Jiang , Ji Bian , Qing Li 2020
As a complementary analysis tool to conventional high-field NMR, zero- to ultralow-field (ZULF) NMR detects nuclear magnetization signals in the sub-microtesla regime. Spin-exchange relaxation-free (SERF) atomic magnetometers provide a new generation of sensitive detector for ZULF NMR. Due to the features such as low-cost, high-resolution and potability, ZULF NMR has recently attracted considerable attention in chemistry, biology, medicine, and tests of fundamental physics. This review describes the basic principles, methodology and recent experimental and theoretical development of ZULF NMR, as well as its applications in spectroscopy, quantum control, imaging, NMR-based quantum devices, and tests of fundamental physics. The future prospects of ZULF NMR are also discussed.
We report the results of an experimental search for ultralight axion-like dark matter in the mass range 162 neV to 166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment (CASPEr) is based on a precision measurement of $^{207}$Pb solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axion-like dark matter can exert an oscillating torque on $^{207}$Pb nuclear spins via the electric-dipole moment coupling $g_d$, or via the gradient coupling $g_{text{aNN}}$. We calibrated the detector and characterized the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We swept the magnetic field near this value and searched for axion-like dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds $|g_d|<9.5times10^{-4},text{GeV}^{-2}$ and $|g_{text{aNN}}|<2.8times10^{-1},text{GeV}^{-1}$ (95% confidence level) in this frequency range. The constraint on $g_d$ corresponds to an upper bound of $1.0times 10^{-21},text{e}cdottext{cm}$ on the amplitude of oscillations of the neutron electric dipole moment, and $4.3times 10^{-6}$ on the amplitude of oscillations of CP-violating $theta$ parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axion-like dark matter in the nano-electronvolt mass range.
We report results from searches of pseudoscalar and vector bosonic super-weakly interacting massive particles (super-WIMP) in the TEXONO experiment at the Kuo-Sheng Nuclear Power Station, using 314.15 kg days of data from $n$-type Point-Contact Germa nium detector. The super-WIMPs are absorbed and deposit total energy in the detector, such that the experimental signatures are spectral peaks corresponding to the super-WIMP mass. Measured data are compatible with the background model, and no significant excess of super-WIMP signals are observed. We derived new upper limits on couplings of electrons with the pseudoscalar and vector bosonic super-WIMPs in the sub-keV mass region, assuming they are the dominant contributions to the dark matter density of our galaxy.
It has been argued that the existence of old neutron stars excludes the possibility of non-annihilating light bosonic dark matter, such as that arising in asymmetric dark matter scenarios. If non-annihilating dark matter is captured by neutron stars, the density will eventually become sufficient for black hole formation. However, the dynamics of collapse is highly sensitive to dark-matter self-interactions. Repulsive self-interactions, even if extremely weak, can prevent black hole formation. We argue that self-interactions will necessarily be present, and estimate their strength in representative models. We also consider co-annihilation of dark matter with nucleons, which arises naturally in many asymmetric dark matter models, and which again acts to prevent black hole formation. We demonstrate how the excluded region of the dark-matter parameter space shrinks as the strength of such interactions is increased, and conclude that neutron star observations do not exclude most realistic bosonic asymmetric dark matter models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا