ﻻ يوجد ملخص باللغة العربية
The GENFIT toolkit, initially developed at the Technische Universitaet Muenchen, has been extended and modified to be more general and user-friendly. The new GENFIT, called GENFIT2, provides track representation, track-fitting algorithms and graphic visualization of tracks and detectors, and it can be used for any experiment that determines parameters of charged particle trajectories from spacial coordinate measurements. Based on general Kalman filter routines, it can perform extrapolations of track parameters and covariance matrices. It also provides interfaces to Millepede II for alignment purposes, and RAVE for the vertex finder. Results of an implementation of GENFIT2 in basf2 and PandaRoot software frameworks are presented here.
A general method is presented to explicitly compute autocovariance functions for non-Poisson dichotomous noise based on renewal theory. The method is specialized to a random telegraph signal of Mittag-Leffler type. Analytical predictions are compared
For a high source activity experiment, such as HOLMES, non-constant baseline pulses could constitute a great fraction of the data-set. We test the optimal filter matrix technique, proposed to process these pulses, on simulated responses of HOLMES microcalorimeters.
For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading
The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined
I re-examine a recent work by G. Landi and G. E. Landi. [arXiv:1808.06708 [physics.ins-det]], in which the authors claim that the resolution of a tracker ca vary linearly with the number of detection layers, $N$, that is, faster than the commonly kno