ترغب بنشر مسار تعليمي؟ اضغط هنا

MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation

139   0   0.0 ( 0 )
 نشر من قبل Nabil Ibtehaz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years Deep Learning has brought about a breakthrough in Medical Image Segmentation. U-Net is the most prominent deep network in this regard, which has been the most popular architecture in the medical imaging community. Despite outstanding overall performance in segmenting multimodal medical images, from extensive experimentations on challenging datasets, we found out that the classical U-Net architecture seems to be lacking in certain aspects. Therefore, we propose some modifications to improve upon the already state-of-the-art U-Net model. Hence, following the modifications we develop a novel architecture MultiResUNet as the potential successor to the successful U-Net architecture. We have compared our proposed architecture MultiResUNet with the classical U-Net on a vast repertoire of multimodal medical images. Albeit slight improvements in the cases of ideal images, a remarkable gain in performance has been attained for challenging images. We have evaluated our model on five different datasets, each with their own unique challenges, and have obtained a relative improvement in performance of 10.15%, 5.07%, 2.63%, 1.41%, and 0.62% respectively.



قيم البحث

اقرأ أيضاً

Convolutional neural networks (CNNs) for biomedical image analysis are often of very large size, resulting in high memory requirement and high latency of operations. Searching for an acceptable compressed representation of the base CNN for a specific imaging application typically involves a series of time-consuming training/validation experiments to achieve a good compromise between network size and accuracy. To address this challenge, we propose CC-Net, a new image complexity-guided CNN compression scheme for biomedical image segmentation. Given a CNN model, CC-Net predicts the final accuracy of networks of different sizes based on the average image complexity computed from the training data. It then selects a multiplicative factor for producing a desired network with acceptable network accuracy and size. Experiments show that CC-Net is effective for generating compressed segmentation networks, retaining up to 95% of the base network segmentation accuracy and utilizing only 0.1% of trainable parameters of the full-sized networks in the best case.
With the advent of advancements in deep learning approaches, such as deep convolution neural network, residual neural network, adversarial network; U-Net architectures are most widely utilized in biomedical image segmentation to address the automatio n in identification and detection of the target regions or sub-regions. In recent studies, U-Net based approaches have illustrated state-of-the-art performance in different applications for the development of computer-aided diagnosis systems for early diagnosis and treatment of diseases such as brain tumor, lung cancer, alzheimer, breast cancer, etc. This article contributes to present the success of these approaches by describing the U-Net framework, followed by the comprehensive analysis of the U-Net variants for different medical imaging or modalities such as magnetic resonance imaging, X-ray, computerized tomography/computerized axial tomography, ultrasound, positron emission tomography, etc. Besides, this article also highlights the contribution of U-Net based frameworks in the on-going pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19.
In recent years, computer-aided diagnosis has become an increasingly popular topic. Methods based on convolutional neural networks have achieved good performance in medical image segmentation and classification. Due to the limitations of the convolut ion operation, the long-term spatial features are often not accurately obtained. Hence, we propose a TransClaw U-Net network structure, which combines the convolution operation with the transformer operation in the encoding part. The convolution part is applied for extracting the shallow spatial features to facilitate the recovery of the image resolution after upsampling. The transformer part is used to encode the patches, and the self-attention mechanism is used to obtain global information between sequences. The decoding part retains the bottom upsampling structure for better detail segmentation performance. The experimental results on Synapse Multi-organ Segmentation Datasets show that the performance of TransClaw U-Net is better than other network structures. The ablation experiments also prove the generalization performance of TransClaw U-Net.
The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net (no-new-Net), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.
Automatic medical image segmentation has made great progress benefit from the development of deep learning. However, most existing methods are based on convolutional neural networks (CNNs), which fail to build long-range dependencies and global conte xt connections due to the limitation of receptive field in convolution operation. Inspired by the success of Transformer in modeling the long-range contextual information, some researchers have expended considerable efforts in designing the robust variants of Transformer-based U-Net. Moreover, the patch division used in vision transformers usually ignores the pixel-level intrinsic structural features inside each patch. To alleviate these problems, we propose a novel deep medical image segmentation framework called Dual Swin Transformer U-Net (DS-TransUNet), which might be the first attempt to concurrently incorporate the advantages of hierarchical Swin Transformer into both encoder and decoder of the standard U-shaped architecture to enhance the semantic segmentation quality of varying medical images. Unlike many prior Transformer-based solutions, the proposed DS-TransUNet first adopts dual-scale encoder subnetworks based on Swin Transformer to extract the coarse and fine-grained feature representations of different semantic scales. As the core component for our DS-TransUNet, a well-designed Transformer Interactive Fusion (TIF) module is proposed to effectively establish global dependencies between features of different scales through the self-attention mechanism. Furthermore, we also introduce the Swin Transformer block into decoder to further explore the long-range contextual information during the up-sampling process. Extensive experiments across four typical tasks for medical image segmentation demonstrate the effectiveness of DS-TransUNet, and show that our approach significantly outperforms the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا